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Abstract 

Statistical iterative reconstruction (SIR) algorithms for x-ray computed tomography 

(CT) have the potential to reconstruct images with less noise and systematic error than 

the conventional filtered backprojection (FBP) algorithm.  More accurate reconstruction 

algorithms are important for reducing imaging dose and for a wide range of quantitative 

CT applications.  The work presented herein investigates some potential advantages of 

one such statistically motivated algorithm called Alternating Minimization (AM).  A 

simulation study is used to compare the tradeoff between noise and resolution in images 

reconstructed with the AM and FBP algorithms.  The AM algorithm is employed with an 

edge-preserving penalty function, which is shown to result in images with contrast-

dependent resolution.  The AM algorithm always reconstructed images with less image 

noise than the FBP algorithm.  Compared to previous studies in the literature, this is the 

first work to clearly illustrate that the reported noise advantage when using edge-

preserving penalty functions can be highly dependent on the contrast of the object used 

for quantifying resolution.  A polyenergetic version of the AM algorithm, which 

incorporates knowledge of the scanner’s x-ray spectrum, is then commissioned from data 

acquired on a commercially available CT scanner.  Homogeneous cylinders are used to 

assess the absolute accuracy of the polyenergetic AM algorithm and to compare 

systematic errors to conventional FBP reconstruction.  Methods to estimate the x-ray 

spectrum, model the bowtie filter and measure scattered radiation are outlined which 

support AM reconstruction to within 0.5% of the expected ground truth.  The 

polyenergetic AM algorithm reconstructs the cylinders with less systematic error than 

FBP, in terms of better image uniformity and less object-size dependence.  Finally, the 

accuracy of a post-processing dual-energy CT (pDECT) method to non-invasively 

measure a material’s photon cross-section information is investigated.  Data is acquired 

on a commercial scanner for materials of known composition.  Since the pDECT method 

has been shown to be highly sensitive to reconstructed image errors, both FBP and 

polyenergetic AM reconstruction are employed.  Linear attenuation coefficients are 

estimated with residual errors of around 1% for energies of 30 keV to 1 MeV with errors 

rising to 3%-6% at lower energies down to 10 keV.  In the ideal phantom geometry used 
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here, the main advantage of AM reconstruction is less random cross-section uncertainty 

due to the improved noise performance. 
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1. Introduction 

X-ray computed tomography (CT), first introduced in the early 1970’s, has grown to 

become one of the most important imaging modalities in modern medicine for both 

diagnostic and therapeutic applications.  In x-ray transmission tomography, photons 

produced in an x-ray tube are transmitted through the patient to form projections that 

represent the attenuation along the ray connecting the source and detector.  Projections 

acquired at many angles around an object allow tomographic reconstruction of the 

object’s interior based on Radon’s theory from 1917.  The intensity of each reconstructed 

image pixel is related to the total attenuation coefficient of the material occupying that 

location.  Advances in hardware technology, such as slip-ring gantry designs, helical 

scanning trajectories and increasing the number of axial slices acquired per rotation allow 

modern day acquisition of an entire volume of CT data in a few seconds. 

X-ray CT has found use in a broad range of diagnostic and therapeutic applications 

owing to its ability to visualize three-dimensional (3D) anatomical structure, excellent 

contrast and fast data acquisition.  Many applications utilize the information in CT 

images qualitatively, e.g., comparing the relative intensity to identify tissue changes in 

support of a diagnosis or using the geometric information for localizing certain 

anatomical structures.  In radiation therapy (RT), CT simulators are used to visualize 

target volumes in 3D allowing highly conformal doses of radiation to be delivered. The 

advent of flat panel detectors has led to the development of in-room cone-beam CT 

imaging systems used for image-guided RT to reduce daily targeting errors. Other 

applications endeavor to use the quantitative information of reconstructed CT image 

intensities.  For example, to calculate the delivered RT dose in heterogeneous 3D patient 

geometries or to assess bone mineral density changes indicative of osteoporosis.  In these 

quantitative applications, small systematic and random errors in reconstructed image 

intensity may undermine the clinical efficacy of the intended task. 

The focus of this dissertation research is in the application and characterization of an 

advanced CT image reconstruction algorithm that has the potential to improve the 

accuracy of reconstructed image intensities in support of quantitative CT applications.  
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The following introduction sections present the major concepts, background and rationale 

for this research. First, the general properties and assumptions of the conventional 

reconstruction method that can lead to systematic and random image uncertainties are 

outlined.  An introduction to a class of statistically motivated reconstruction algorithms is 

then provided.  These algorithms have the potential to reduce systematic and random 

uncertainties.  The potential clinical impact of more accurate image reconstruction for 

quantitative CT is then presented.  Special focus is on the topic of reducing CT patient 

dose and the specific quantitative CT problem of estimating low-energy photon cross-

section information.  The aim and novelty of the remaining chapters is then summarized. 

1.1. Filtered back-projection (FBP) for x-ray CT image reconstruction 

Despite the major advances in CT scanner hardware and data acquisition techniques, 

commercially utilized reconstruction algorithms have changed relatively little since the 

introduction of the first clinical scanner in 1972.  Filtered backprojection (FBP)1 has been 

the reconstruction algorithm of choice because it is fast and supports image quality 

sufficient for most qualitative applications of CT.  The backprojection technique 

essentially “smears” the measured attenuation line-integral equally amongst pixels along 

each source-detector ray passing through the patient.  A basic filter, a ramp function, is 

applied to the data to remove the effect of a 1/r blurring artifact inherent in the 

backprojection process.  Other filter modifications are often employed, such as a window 

function to limit reconstruction to frequencies within the Nyquist sampling limit.  The use 

of a weighting function in the backprojection operation extends the basic FBP algorithm 

from parallel beam to modern fan-beam acquisition geometries.  Further algorithm 

modifications have been developed in recent years to reconstruct data acquired from 

cone-beam geometries allowing acquisition of an entire volume of data in a single 

rotation. 

The use of FBP for image reconstruction in x-ray CT is based on some limiting 

assumptions.  First, it is assumed that the projection measurements are noiseless.  Noise 

in the projection data propagates through the image reconstruction process resulting in 

image intensity variations in otherwise homogeneous regions (i.e. random error).  

Excessive noise can limit the clinical utility of the reconstructed images by hiding low-
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contrast objects.  Projection noise can be reduced by increasing the photon flux through 

the patient, but at the cost of increased radiation dose imparted to the patient.  To reduce 

image noise, conventional FBP techniques alter the filter to further reduce the amplitude 

of high-frequency signals in the data, since noise tends to be high frequency in nature.  

However, as edges are also high frequency structures, increased image smoothing results 

in a blurring of physical edges, i.e., reduced resolution.  The relationship between 

reducing image noise at the cost of reduced edge resolution is referred to as the noise-

resolution tradeoff and is characteristic of all image smoothing strategies. 

The second assumption of the analytic Radon transform inversion performed by FBP 

is that the measured data are linear functions of the attenuation line integral along each 

source-detector ray.  Actual measured CT data can suffer from a number of physical 

processes that give rise to a nonlinear relationship between the attenuation line integral 

and the logged data.  One such process arises from the fact that the Bremsstrahlung 

photons emitted from modern day x-ray tubes consist of a spectrum of energies up to the 

accelerating tube potential, which deviates significantly from the monoenergetic 

assumption of FBP.  Since low energy photons are absorbed more readily than high 

energy photons, the average energy of the x-ray spectrum becomes greater as the beam 

traverses an object.  The beam is then said to be “harder” than it was when incident on 

the object.  The polyenergetic x-ray spectrum leads to a non-linear relationship between 

attenuation and the thickness of an absorber that invalidates the linear assumption of 

FBP.  The beam-hardening (BH) phenomenon leads to the characteristic cupping artifact 

(i.e. systematic error)2.  Modern day scanners pre-condition the data in an attempt to 

linearize it prior to the FBP reconstruction3.  Most data correction schemes are based on 

the assumption that the object is water-equivalent.  As patients contain heterogeneous 

distributions of bone and soft tissue, residual artifacts often remain. 

  Radiation that is scattered within an object and reaches a detector other than that of 

the original ray path is another cause of nonlinear CT detector response.  The severity of 

the effect from scattered radiation is directly related to the relative fractions of detected 

signal due to scattered and primary radiation, i.e. the scatter-to-primary ratio (SPR).  In a 

uniform object, scattered radiation causes cupping artifacts similar to the BH effect as the 
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SPR is greatest for rays traversing thicker portions of the object4.  The systematic 

underestimation arises since the scattered radiation leads to an increase in detected signal 

(i.e. an underestimate of attenuation), causing the image intensity to be decreased.  

Scatter, as it adds a nearly uniform background to the measured data is also known to 

decrease image contrast.  When highly attenuating objects such as bone or metal are 

present, beam-hardening and scattered radiation non-linearities are enhanced, causing 

systematic streaking artifacts5 which severely limit the clinical utility of the images.  If an 

estimate of the distribution of scattered radiation is available, it can be subtracted from 

the measured data prior to FBP reconstruction.  However, even with an ideal scatter 

subtraction, reconstructed image noise increases because the scattered intensity contains 

high frequency noise not accounted for in the smoothly varying scatter estimates6,7.   

1.2. Statistical iterative reconstruction (SIR) for x-ray CT 

In contrast to deterministic FBP reconstruction, statistical reconstruction algorithms 

pose image reconstruction as an optimization problem8.  The goal of the optimization is 

to find the image that maximizes the likelihood of observing the measured CT projection 

data.  The likelihood term in the objective function is derived from an assumed statistical 

distribution of the measured data, hence “statistical” in the name.  A forward model 

simulates the CT data formation process and is used in estimating the data means from 

the current image estimate.  The chosen algorithm then iteratively refines the image 

estimate to maximize the fit between the measured data and the simulated data means 

according to the likelihood term of the objective function. 

The simple Poisson distribution of photon counting statistics is most often assumed to 

describe the measured data.  Due to the fact that physical CT detectors are energy-

integrating, the measured data are more accurately represented by the compound Poisson 

distribution9, although it has been shown that the simple Poisson distribution is an 

acceptable approximation for x-ray CT10.  Reconstruction founded on a statistical 

description of the data does not in itself lead to images with less noise.  In fact, the image 

most likely to match the measured data is often unacceptably noisy11 termed as an “over-

fitting” of the data.  One strategy is to impose constraints on the image to satisfy a priori 

assumptions about the object being imaged, for example smoothness.  The assumption of 
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image smoothness is enforced by including a function that penalizes neighboring pixel-

to-pixel intensity variations, assumed to be noise, in the objective function.  Roughness 

penalties effectively reduce image noise, at the expense of blurring physical edges.  For 

these penalized likelihood methods, the tradeoff between noise and resolution is 

controlled by weighting the relative importance of the penalty function in the penalized 

objective function. 

An algorithm that provides a noise-resolution tradeoff advantage means that it can 

reconstruct an image from the same dataset with less image noise for comparable edge 

resolution, or conversely better edge resolution for the same amount of image noise.  

Quadratic penalties are commonly employed to regularize statistical reconstructions, but 

they grow rapidly for large pixel variations and tend to over-blur high-contrast edges.  

Edge-preserving penalty functions are designed to reduce the magnitude of the penalty 

for large intensity differences with the goal of preserving high-contrast resolution.  

However, detailed study of the resulting contrast-dependent nature of these edge-

preserving penalty functions and their effect on the noise-resolution tradeoff is lacking.  

Studies quantifying the noise-resolution tradeoff advantage of statistical algorithms in x-

ray CT are limited to matching the resolution of high-contrast objects12-14 and often 

utilize simple quadratic penalty functions.  The aim of chapter 2 is to assess the noise-

resolution tradeoff properties of one such edge-reserving penalty function.  In this work, 

a novel statistical iterative reconstruction algorithm, Alternating Minimization (AM) is 

used.  The AM algorithm is discussed in more detail in the following chapters, Appendix 

1 and the appended papers this dissertation is based on. 

The SIR forward model allows the flexibility to incorporate many of the non-linear 

processes of CT data acquisition physics that invalidate the underlying assumptions of 

FBP.  Both the polyenergetic nature of the x-ray spectrum and an estimate of scatter can 

be directly incorporated into the forward model.  Furthermore, arbitrarily complex 

acquisition geometries and effects such as detector blurring can be incorporated, whereas 

FBP is derived for parallel beam geometry and requires weighting corrections or 

interpolation for other geometries.  This research focuses on the ability of SIR to reduce 

systematic artifacts from data non-linearities such as beam-hardening and scatter.  
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Literature has shown that the implicit beam-hardening correction of a polyenergetic 

statistical model reconstructs images with improved freedom from systematic cupping 

artifacts than FBP reconstruction of linearized data15,16.  However, these comparisons are 

limited to simulation studies or real data studies using experimental bench-top systems.  

Chapter 3 investigates the CT system characterizations necessary to implement a 

polyenergetic SIR algorithm on a commercially available CT scanner and the quantitative 

accuracy achievable. 

1.3. Impact for quantitative CT applications and the reduction of CT 

imaging dose 

Quantitative CT applications rely on one-to-one relationships relating reconstructed 

image intensities to the quantity of interest, which break down in the presence of 

systematic (scatter, BH, etc.) and random errors (noise).  For many quantitative 

applications, the absolute accuracy of the reconstructed intensity may be relatively 

unimportant if the method is calibrated against relevant control samples.  However, the 

reconstructed image intensity for a given material needs to be consistent; that is, intensity 

for a given material should be independent of location within the scan subject, size of the 

scan subject, and location of the scan subject within the field-of-view (FOV)17,18.  

Residual errors will remain when the test object varies in size, composition or location 

relative to the calibration sample.  Quantitative CT applications such as bone mineral 

density measurement19,20, brain perfusion imaging21, and cardiac perfusion imaging22 

have all been shown to suffer a loss of accuracy from residual systematic errors.  The 

development and characterization of reconstruction algorithms that reduce systematic and 

random errors is thus important for a broad range of clinical quantitative CT applications. 

As described in the following sections, the specific quantitative CT problem of 

estimating photon cross-sections from CT images has the potential for clinical impact in 

radiation therapy.  This quantitative CT problem has been shown to be highly sensitive to 

uncertainties in image intensity and motivates the investigation of more accurate image 

reconstruction algorithms. 
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Dose calculation inaccuracies in low energy photon brachytherapy 

Variations in the atomic composition of tissues impact megavoltage (MV) and 

kilovoltage (kV) radiation therapy dose absorption differently.  In the MV energy range 

the dominant mechanism of photon interaction is Compton scattering, which depends 

mainly on a material’s electron density.  Quantitative methods for inferring electron 

density from CT image intensity have been shown capable of supporting dose 

calculations in the heterogeneous patient-specific geometry with an accuracy of 5% or 

better23,24. 

The current practice for calculating dose from low energy brachytherapy modalities is 

based on the TG-43 protocol25 which assumes the patient is a homogeneous sphere of 

water.  The compositional differences between tissue and water can lead to large dose 

calculation errors for low energy brachytherapy sources.  In fact, dose-volume histogram 

(DVH) metrics commonly used for dose prescription and plan assessment such as D90 

(the dose that covers 90% of the target volume) have been shown to deviate as much as 

30% when incorporating tissue composition and heterogeneities26-29.  Even higher energy 

brachytherapy sources like Ir-192 and Yb-169, can suffer dose calculation errors on the 

order of 5% to 30% when neglecting tissue composition and geometry30,31.  The greater 

effect of tissue composition for kV photon modalities is due to the increased likelihood of 

photoelectric absorption, which is strongly dependent on a material’s atomic number. 

Permanent implantation of low energy Pd-103 and I-125 seeds has become a major 

modality in the treatment of prostate cancer32.  For prostate cancer, the rate of both local 

tumor control and normal tissue toxicity have been correlated with delivered dose33-35.  

For breast cancer, accelerated partial breast irradiation (APBI) utilizing Ir-192 

brachytherapy sources shortens the treatment delivery time to 1 week in comparison to 6-

7 weeks for conventional whole-breast treatment36. Recently, there has been interest in 

permanent seed implantation37 and intracavitary delivery using electronic x-ray 

sources38,39 for partial breast irradiation, which has the potential to further reduce costs 

and shorten treatment delivery time.  Preliminary studies on outcomes of Pd-103 seed 

implantation in the breast have shown a dose-relationship for skin toxicity40.  The APBI 

literature using higher energy Ir-192 sources is more extensive and also show correlation 
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between dose metrics and treatment toxicity41,42.  The inaccurate calculation of dose has 

the effect of flattening the dose-response curve making it more difficult to detect 

statistically significant changes in dose-outcome relationships43.  Dose calculation 

inaccuracies also make it difficult to compare the efficacy of different treatment 

modalities, for example comparing outcomes for partial breast irradiation using 

intracavitary Ir-192 delivery and Pd-103 permanent seed implantation.  Thus, methods to 

improve patient-specific dose calculations stand to make a clinical impact on outcomes 

for patients treated with these low energy brachytherapy modalities. 

Methods of accurately calculating dose for low energy brachytherapy sources in 

patient-specific heterogeneous geometries exist, for example Monte Carlo simulation27,28 

or discrete ordinates methods44,45.  However, they must be provided with accurate 

information about the material occupying each voxel location.  Recommended bulk tissue 

compositions are derived from a handful of measurements that exhibit large sample-to-

sample variability46,47.  In addition, large patient-specific variations exist in the relative 

amount of tissue types present in an anatomic region, for example the relative amount of 

adipose and glandular tissues in the breast48,49.  Uncertainty in bulk tissue composition 

and large patient-to-patient variability highlight the need for a method to measure patient-

specific material information.  Single-energy (SE) CT methods used to calculate patient-

specific heterogeneity corrections for MV photon dose calculation are unsuitable in the 

kV range due to the dependence on both electron density and atomic number. 

Dual-energy CT (DECT) for non-invasive measurement of photon cross-sections 

Dual-energy CT measurements can be used to decouple the dependence of 

attenuation on two independent material parameters.  At the core of DECT are two-

parameter models that relate CT image intensity to an underlying parameter set.  Models 

that parameterize a material’s attenuation based on effective atomic number (Zeff) and 

electron density (e)
50 are physically intuitive, as they are directly related to the physical 

processes of attenuation. Much effort in the literature has been focused on this type of 

parameterization in DECT for material characterization50-53.  For example, Bazalova et 

al.51 used a DECT material characterization method to estimate Zeff and e from real data 

with mean accuracies of 2.8% and 1.8% respectively for a range of materials.  They 
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further reported dose calculated using the DECT estimated Zeff and e values to be within 

1% of dose calculated with exactly assigned material parameters for 18 MV, 6MV and 

250 kVp photon beams.  However, the effect of the uncertainty in Zeff and e is unclear 

for low energy brachytherapy (20 – 30 keV) dose calculation where the PE mechanism 

dominates.  What is ultimately desired for accurate dose calculation is an accurate 

representation of a material’s radiological properties including the total attenuation 

coefficient, mass-energy absorption coefficient, and partial and differential cross-sections 

for individual interaction processes.  Williamson et al. showed that the widely used 

models that parameterize attenuation as functions of Zeff and e do not accurately 

represent low energy cross-sections, especially PE partial cross-sections or mass-energy 

absorption coefficients54. 

To date, very few experiences have been reported in the literature that systematically 

assess the accuracy achievable of photon cross-section estimation using multi-energy CT 

data.  Midgley has shown the ability to represent low energy photon cross-sections with 

1.5% accuracy.  However the model is impractical for clinical use as it requires scans at 4 

energies and also utilizes near monochromatic characteristic x-ray beam scanning that 

cannot be easily extrapolated to clinical practice55,56.  Another 2-parameter model, the 

basis-vector model (BVM), represents the attenuation of an unknown substance as a 

linear combination of the attenuation functions of two known and well-chosen basis 

materials. Williamson et al. have demonstrated the ability of the computationally simple 

BVM to represent low energy cross-sections from ideal simulated DECT images with 

around 1% accuracy54, making it a viable candidate for cross-section estimation.  The 

method described by Williamson et al. utilizes reconstructed image information, and is 

thus termed a ‘post-processing’ technique.  Goodsitt et al. reported recently on their 

experience using the commercial GE dual-energy system for estimating linear attenuation 

coefficients in the energy range of 40 keV to 120 keV57.  Though the details of the 

proprietary GE system are unknown, they do report that low energy cross-sections 

estimates can quickly deviate greater than 20% from reference and are extremely 

sensitive to imaging errors. 
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Similarly, Williamson et al. used an error propagation analysis to demonstrate that the 

post-processing DECT cross-section estimation is exquisitely sensitive to reconstructed 

CT image intensity uncertainties54.  DECT cross-section estimation pushes CT image 

reconstruction to a limit of precision and accuracy not likely achievable using 

conventional preprocessing corrections and FBP reconstruction.  Given the apparent 

advantages of statistical reconstruction algorithms in reconstructing images with both less 

noise (random error) and artifacts (systematic error) it is hypothesized that SIR can 

further improve the performance of the otherwise poorly conditioned DECT photon 

cross-section problem.  Chapter 4 compares the accuracy of a post-processing DECT 

cross-section estimation method operating on images reconstructed with FBP and SIR 

algorithms using data acquired on a commercial scanner. 

Reduction of CT imaging dose 

X-ray CT, in using ionizing radiation for image formation, delivers a quantifiable 

amount of radiation dose to the scan subject.  Epidemiological studies of atomic bomb 

survivors and radiation workers have shown a statistically significant increase of cancer 

incidence for effective doses in the range of 10-100 mSv58,59.  While there is no direct 

evidence of increased cancer risk from CT procedures, the currently accepted linear no-

threshold model can be used to extrapolate risk to the low doses on the order of 10 mSv 

or less, common to CT60.  Recent publications have highlighted the increased utilization 

of CT as a potential public health issue61 which raises the question of the clinical benefit 

from performing a CT exam relative to the associated risk of carcinogenesis.  In the 

diagnostic realm, the increased use of CT for pediatric patients and screening of high-

risk, but asymptomatic, patients for lung cancer, colon cancer and heart disease is highly 

relevant to this risk-benefit discussion.  In radiation oncology, image-guided therapy 

approaches may include cone-beam CT studies for nearly all fractions over a 5 week 

treatment course.  The growing public consciousness of the increasing utilization of CT 

in the medical field and the associated carcinogenic potential makes dose reduction an 

important topic to address. 

Reducing the dose imparted from each individual CT examination plays an important 

role in reducing the collective risk to the general public.  The most direct way to reduce 
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dose from a CT is to reduce the x-ray flux.  However, image noise will subsequently 

increase and could limit the clinical utility of the images by reducing the visibility of low-

contrast objects62.  Increasing the aggressiveness of image smoothing techniques to 

reduce noise in low dose images comes with the well known tradeoff of reduced edge 

resolution, which can also limit clinical utility by obscuring small objects.  Dose 

reduction by reducing flux or increasing image smoothing is thus limited by the noise-

resolution tradeoff for a particular reconstruction algorithm.  An algorithm with a noise-

resolution tradeoff advantage will be able to reconstruct an image with comparable image 

resolution and less noise.  Equivalently, such an algorithm could reconstruct images with 

similar image noise and resolution from noisier data, i.e., data acquired with less patient 

dose.  The noise-resolution tradeoff advantages of SIR algorithms over FBP thus 

represent the potential for dose reduction by utilizing the acquired data more efficiently. 

Noise-resolution tradeoff studies often quote factors of 2 to 10 by which the SIR 

algorithm can reduce dose relative to FBP12-14.  However, these comparisons match 

resolution only for high-contrast objects and typically only use quadratic penalty 

functions.  Edge-preserving penalty functions are designed to penalize high- and low-

contrast structures differently. Making dose reduction potential assessments at matched 

high-contrast resolution for algorithms utilizing edge-preserving penalties may not be 

appropriate for clinical tasks concerned with visualizing low-contrast structures. Chapter 

2 explores considerations necessary to assess the noise-resolution tradeoff advantage, and 

subsequent potential for dose reduction, of SIR algorithms that utilize edge-preserving 

penalty functions. 

Another important dose-reduction issue is the calculation of patient dose from a CT 

exam.  Current CT dose assessment is based on measurements made in reference 

phantoms63 and therefore do not account for even gross patient changes such as body 

size64,65.  A non-invasive method to measure patient-specific cross-section information 

would significantly improve the accuracy of patient-specific dose calculations from kV 

imaging procedures. 
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1.4. Research aims and organization 

 With the potential benefits of more accurate and dose-efficient statistical 

reconstruction in mind, the work described in this dissertation aims to further the 

assessment of potential SIR advantages.  The noise performance advantages of SIR 

algorithms have been explored in the literature, however detailed studies are limited to 

quadratic penalty functions and only when matching resolution for high-contrast 

structures such as bones or steel bb’s.  Chapter 2 explores the noise-resolution tradeoff, 

and implicit dose reduction potential, of edge-preserving penalized likelihood 

reconstruction.  A range of contrast magnitudes are investigated, including low-contrast 

interfaces characteristic of organ boundaries relevant to the radiation therapy soft-tissue 

segmentation task. 

 More accurate modeling of CT physics is expected to provide images with less 

systematic error from data non-linearities than FBP.  In particular, there are examples in 

the literature that demonstrate modeling the polychromatic x-ray spectrum leads to 

images with less systematic error from the BH artifact. However, these studies only 

compare the relative variation of image intensities within a uniform object and assess 

absolute accuracy in only a few small samples.  Furthermore, these comparisons are 

made in either simulation studies or with real data acquired on experimental bench-top 

systems. Chapter 3 addresses practical issues for implementing the polyenergetic AM 

algorithm on a commercial CT scanner with absolute accuracy on the order of 0.5%.  

Consistency of image intensities is also compared between the AM and FBP algorithms.  

The accuracy and consistency of reconstruction are investigated using uniform cylinders 

of varying material, size, and location within the FOV. 

From simulation studies in the literature, post-processing DECT methods seem 

capable of representing photon cross-sections in support of more accurate dose 

calculation for kV photon modalities.  Furthermore, the problem has been shown to be 

highly sensitive to image intensity errors.  Few experiences of estimating photon cross-

sections from multi-energy data acquired on a commercial CT system appear in the 

literature.  Chapter 4 assesses the experimental accuracy achievable of a post-processing 

photon cross-section estimation method for data acquired on a commercially available 
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CT scanner.  Polyenergetic statistical image reconstruction, with advantages of less 

image noise and less systematic artifacts, is compared to FBP reconstruction for potential 

improvements to the highly sensitive problem of cross-section estimation from DECT 

images. 
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2. Noise-resolution tradeoffs in x-ray CT image reconstruction 

using edge-preserving penalty functions 

2.1. Background 

It is known that an image which maximizes the likelihood of observing the measured 

data often has an undesirable amount of noise11,66.  Noise can be reduced by terminating 

iterations prior to convergence67, however it is difficult to control the noise and resolution 

properties.  In addition, the resolution will be dependent on the particular optimization 

algorithm that is used68.  A popular alternative for controlling noise in statistical 

reconstruction algorithms is by incorporating a priori assumptions about the image, e.g. 

smoothness, in the objective function typically in the form of penalty functions.  This 

process, termed regularization, has several attractive properties.  Regularization 

constrains the optimization, which better conditions the ill-posed reconstruction problem 

ultimately leading to an accelerated rate of image convergence.  It should be noted that 

the penalized estimate may sacrifice accuracy since the maximum of likelihood will not 

be reached.  Penalized likelihood methods allow control over the noise-resolution 

tradeoff by changing the relative importance of the penalty in the optimization.  As noise 

properties are controlled by the choice of penalty function shape and relative penalty 

weighting in the objective function, the particular choice of optimization algorithm can 

be reduced as long as the maximum of the penalized likelihood objective function is 

reached8,68.  Herein, we refer to the relative weight of the penalty function in the 

objective function as the smoothing strength. 

Previous investigators have studied the noise-resolution tradeoffs in x-ray CT using 

statistical reconstruction methods.  La Riviere et al.12 employed a Poisson-based 

penalized likelihood algorithm for smoothing sinogram data prior to FBP reconstruction.  

A quadratic penalty function was used for regularization and the resolution of the 

resultant images was quantified by a Gaussian model fit to image-intensity profiles 

through high-contrast bone edges.  Multiple reconstructions were performed with varying 

smoothing strengths allowing noise-resolution tradeoff curves to be plotted. The tradeoff 
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curves demonstrate improved noise performance over a range of resolutions for their 

penalized likelihood sinogram smoothing process in comparison to an adaptive trimmed 

mean filter approach69. 

Ziegler et al.14 evaluated the noise performance of a statistical reconstruction 

algorithm that uses convex surrogates to the Poisson log-likelihood and ordered subsets 

to increase convergence rate (OSC)70.  Rather than using regularization, OSC iterations 

were stopped after the modulation transfer function (MTF) measured using steel bb’s was 

slightly better than achievable with FBP.  The FBP kernel was then modified to match the 

OSC MTF. Ziegler et al. demonstrated that the OSC iterative reconstruction improves 

signal-to-noise ratio (SNR) by a factor of 2.1 to 3.0 over FBP.  Their study used no 

penalty function and compared SIR and FBP image noise only for equivalent resolution 

as measured by high-contrast steel bb’s. 

Thibault et al.13 presented an interesting study of statistical reconstruction using edge-

preserving penalty functions, demonstrating improved cross-plane resolution and reduced 

cone-beam windmill artifacts in a 3eD multi-slice helical scanning geometry.  The effect 

of several edge-preserving penalty shapes was compared to one another. The smoothing 

strength for each shape was tuned to match noise in the resultant penalized likelihood 

images.  Resolution was reported as the 50% MTF value measured from a tungsten wire 

in a GE performance phantom.  The results illustrate how the different penalty function 

shapes lead to varying resolution.  For one of the edge-preserving penalty shapes, noise 

and resolution was compared to FBP reconstruction with “standard” and “bone” filters 

available on the GE scanner.  The edge-preserving penalized reconstruction returned 50% 

and 10% MTF values similar to the FBP high-resolution bone filter, with less noise than 

the standard filter.  However, a single smoothing strength was used for comparing 

penalized likelihood and FBP reconstruction without attempting to match noise or 

resolution.  Still the edge-preserving penalized likelihood method showed impressive 

improvement over conventional FBP stimulating further investigation. 
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2.2. Methodology and results 

First, the terms to describe the CT geometry are defined.  All image reconstructions in 

this dissertation work were carried out in a 2-dimensional axial geometry shown in figure 

1. The image space, x, refers to the grid of 512x512 rectangular image pixels.  The CT 

sinogram data space, y, is defined by the angle of each source-detector ray, , and each 

gantry angle, .   

Figure 1.  The axial CT geometry used for all reconstructed images in this work. 
 

The Alternating Minimization (AM) algorithm reformulates the classic maximization 

of the Poisson log-likelihood as a minimization of Csiszar’s I-divergence71, ( || )I d g , an 

information-theoretic metric that quantifies the discrepancy between the measured data d 

and the expected data means g that are calculated from the current image estimate .  The 

I-divergence equals the negative of the log-likelihood minus an entropy term, meaning 

that minimizing the I-divergence is equivalent to maximizing the log-likelihood.  The 

AM algorithm is briefly outlined in the appended papers (papers I – IV) and an overview 

of the algorithm is included in Appendix 1.  The full derivation of the algorithm can be 

found in O’Sullivan 200772.  

The penalized objective function consists of the I-divergence and a roughness penalty 

to enforce the assumption of image smoothness: 

( ) ( || ) ( )I d g R   μ μ . (1.1) 
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The strength of the image smoothing is controlled by , which specifies the relative 

importance of the penalty function in the optimization. 

The log-cosh edge-preserving penalty function 

Quadratic penalty functions are effective at suppressing noise, but can over-blur high-

contrast structures as the penalty magnitude rapidly increases for large neighboring pixel 

differences.  The continuously defined log-cosh function73,74 used in this work is similar 

to the piecewise Huber penalty75.  The common theme for these edge-preserving penalty 

functions is to reduce the magnitude of the penalty function for large pixel differences 

that are likely to be physical edges.  The log-cosh penalty function is defined as: 

    
( )

1
( ) log cosh ( ) ( )

x x N x

R w x x x  


          
 μ .     (1.2) 

The weighting function w(x) (equation (4.15) in Appendix 1) controls the 

neighborhood, N(x), for penalty calculation and includes the four directly adjacent pixels.  

The parameter  controls the pixel intensity difference for which the penalty transitions 

from quadratic to linear growth. Increasing  causes the transition to linear growth to 

occur at smaller intensity differences.  Figure 2 plots the log-cosh penalty function for 

two values of  used in this work.  =100 transitions for pixel differences of 

approximately 50% and is closer in shape to a quadratic penalty function.  =700 

transitions for pixel differences of approximately 10% and is closer in shape to a linear 

function making it strongly edge-preserving. 
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Figure 2.  Comparison of quadratic and edge-preserving log-cosh roughness penalties.  The parameter  
controls the transition from quadratic to linear growth for the log-cosh penalty function.  Note that the 
functions are scaled here for plotting purposes. 

Simulation summary 

With the goal of isolating the smoothing properties of the reconstruction algorithms, 

an ideal monoenergetic simulation environment (E = 61 keV) was used to avoid 

systematic artifacts from non-linearities such as BH and scatter.  Two simulation 

phantoms are utilized, each consisting of a 20 cm diameter water cylinder with various 2 

cm diameter cylindrical contrast inserts. The clock phantom, shown in figure 3, contains 

8 inserts of varying contrast [7% : +238%], each a constant distance from the center (5.5 

cm) allowing contrast dependence of the noise-resolution tradeoff to be assessed.  Paper I 

also utilized a radial phantom containing 4 inserts of the same contrast (+30%) at varying 

radial distances from the FOV center (2 cm to 6.5 cm) to assess the spatial dependence of 

the noise-resolution tradeoff. 
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(a) 

 
 (b) 

Figure 3.  (a) The Clock phantom consists of a 20 cm diameter water cylinder with 2 cm inserts of 
varying contrast used for assessing the contrast-dependence of the noise-resolution (NR) tradeoff.  
(b) Regions-of-interest for measuring noise around each contrast insert. 
 

Noiseless monoenergetic data was simulated for the two phantoms in an axial CT 

geometry composed of 1056 gantry positions () equally spaced around a full 360º 

rotation. There were 384 detectors (), each subtending an arc angle of 4.0625 minutes. 

Source-to-isocenter distance was 570 mm and source-to-detector distance was 1005 mm, 

giving a detector width of 1.2 mm and projected width at isocenter of 0.67 mm. The 

image space consisted of 512 x 512 square pixels each 0.5 mm on a side.  Simple Poisson 

noise was added to the data with variance approximating that observed in data acquired 

on the Philips Brilliance big bore scanner. 

To assess the tradeoff of noise and resolution, the synthetic noisy sinogram datasets 

were reconstructed with a range of smoothing strengths for each algorithm.  The FBP 

algorithm used throughout this dissertation research includes a Gaussian kernel in the 

filter for image smoothing.  For FBP, the logged sinogram data were reconstructed using 

Gaussian smoothing filters of varying FWHM. Refer to paper I for more detail regarding 

the FBP algorithm.  The penalized AM algorithm is investigated with the two log-cosh 

penalty shapes displayed in figure 2.  AM-700 uses =700 and is strongly edge-

preserving.  AM-100 uses =100 and is more conservative as it is similar in shape to a 

quadratic penalty function.  Both AM-100 and AM-700 images were reconstructed with a 

range of smoothing strengths,  in the penalized objective function (1.1).  For each case, 

the AM algorithm was run for 250 iterations using 22 ordered subsets (refer to Appendix 

1).  Due to the large number of iterations employed, the AM images are very near 
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complete convergence, thus the conclusions presented here could reasonably be 

extrapolated to other algorithms that seek to maximize the same penalized likelihood 

objective function. 

Image noise was evaluated in the water background around each contrast insert within 

all reconstructions.  The standard deviation, as a percent of the mean, was calculated for 

pixels in a circular annulus surrounding each contrast insert as shown in figure 3. 

The resolution metric used in this work is based on the Modulation Transfer Function 

(MTF). While x-ray transmission CT is not a shift-invariant linear system, the MTF is 

considered to be a valid measure of local impulse response, providing insight into the 

effect of reconstruction on edge blurring. As described in more detail in paper I, the MTF 

was calculated from a model fit to the edge-spread function (ESF) for each contrast 

insert. 

The pre-sampled ESF was constructed for each contrast insert by plotting each pixel’s 

intensity as a function of distance to the analytically defined insert edge.  In this way, the 

transition between the water background and the contrast insert can be visualized. 

Sampling pixels around a circular insert to form an ESF represents an average of the edge 

response function within the sampled region of interest, thus reducing effects of 

resolution anisotropy and non-uniformity. 

Edge response shape of the strongly edge-preserving penalty function 

Figure 4 shows the ESF of the bone insert for noise-matched FBP and AM-700.  It is 

interesting to note the effect that the strongly edge-preserving AM-700 penalty function 

significantly alters the shapes of the high-contrast bone insert ESF and MTF.  The steep 

central transition and softer shoulder roll-off necessitated use of a Gaussian-exponential 

model for fitting, in contrast to the pure Gaussian blurring model which accurately 

models the FBP image frequency response. 

 To plot tradeoff curves that illustrate how the image noise and resolution vary as a 

function of smoothing strength for a particular algorithm, it is useful to extract a single 

value as a surrogate of edge sharpness.  La Riviere12, reports the FWHM of a Gaussian 
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blurring model fit to a bone edge.  This is an intuitive surrogate as a wider Gaussian 

represents a blurrier edge. However, our 6-parameter Gaussian-exponential model did not 

lead to such a straight-forward metric.  Figure 4 shows the bone insert’s MTF for the 

noise-matched FBP and AM-700 images.  Given the long MTF tails for AM-700 high-

contrast structures, conventional MTF metrics like the 10% MTF and 50% MTF were 

found to provide a poor characterization of the curves. Taking the noise-matched bone 

MTFs in figure 4 as an example, the 10% MTF for AM-700 is 2.79 lp / mm and for FBP 

is 0.53 lp / mm.  As a surrogate of edge sharpness, the MTF curve is integrated to a 

chosen spatial frequency x:   

0

1
( )

x

xA MTF f df
x

   (1.3). 

Intuitively, the MTF area ( xA ) represents the fraction of ideal input signal that is 

recovered for spatial frequencies less than or equal to x.  The choice of cutoff frequency x 

is relatively arbitrary.  The results presented here integrate the MTF up to 0.5 lp / mm as 

it is near the frequency where MTF shape is seen to differ the most for FBP and AM-700 

and is also close to the American College of Radiology’s (ACR) accreditation 

requirement of 0.6 lp / mm.  Paper II compares results when integrating the MTF up to 

the Nyquist frequency of 1.0 lp / mm. 
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(a) (b) 

(c) (d) 
Figure 4.  (a) Comparison of the bone ESF reconstructed with FBP and strongly edge-preserving AM-
700 at nearly matched image noise (~ 1.09%  0.01%).  Corresponding lines represent the Gaussian-
Exponential model fit used to estimate the MTF. (b) The AM-700 high-contrast edges were poorly fit by 
the Gaussian blurring model, motivating the Gaussian-Exponential ESF model. (c) and (d) display the 
MTF for the noise-matched FBP and AM-700 bone inserts respectively. 

Contrast-dependent tradeoff of noise and resolution 

With a noise measurement and single value surrogate of edge sharpness for each 

contrast insert in hand, a curve characterizing the tradeoff between noise and resolution 

can be plotted for each algorithm.  Figure 5 displays the noise-resolution tradeoff curves 

for 4 of the contrast inserts within the clock phantom.  The qualitative trends for the other 

contrast inserts follow those presented here. 
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The AM tradeoff curves always lie below the corresponding FBP tradeoff curves, 

implying that the penalized AM algorithm reconstructs images with either less image 

noise for the same resolution metric or sharper edges for matched image noise.  The more 

strongly edge-preserving AM-700 results in clearly contrast dependent noise-resolution 

tradeoffs with increasing advantage of statistical reconstruction for increasing insert 

contrast. 

Figure 5.  Noise-resolution tradeoff curves for 4 contrast inserts as labeled.  The strongly edge-preserving 
AM-700 reconstructions show clear dependence on the contrast for which resolution is quantified. 

 

It is interesting to note that the noise in the water background around each contrast 

insert is essentially constant.  This means that the contrast-dependent nature of the AM 

tradeoff curves are due to differences in resolution.  Figure 6 illustrates the result that the 

edge-preserving log-cosh penalty function causes resolution to vary within a single image 

depending on contrast. 
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Figure 6.  MTF curves for selected inserts of varying contrast within a single image for (a) AM-100 and 
(b) AM-700 show the contrast dependent resolution of the edge-preserving log-cosh penalty function.  

 

Paper I discusses in detail the results of investigating the spatial dependence of the 

noise and resolution within the radial phantom images.  It is shown that the noise and 

resolution vary as a function of location differently for the AM and FBP algorithms.  

Interestingly, the ratio of FBP to AM image noise calculated at a matched MTF area 

value is seen to be relatively invariant over the FOV. 

Implications for dose reduction potential 

An algorithm that can reconstruct an image of comparable resolution with less noise 

from the same projection data offers a potential for dose reduction.  From the 

assumptions that image noise is proportional to projection noise1,76,77 and that projection 

variance is inversely proportional to patient dose, the dose fraction is calculated as the 

ratio of AM variance to FBP variance at a given value of the resolution surrogate, 

 
 

2

2
dose fraction AM x

FBP x

A

A




 . (1.4) 

Intuitively, the dose fraction represents the fraction of dose necessary for the AM 

algorithm to achieve the same image noise and resolution as the FBP algorithm.  Figure 7 

plots the dose fraction as a function of contrast for a matched resolution surrogate value 

of 0.5A = 0.75.  Here again, AM-700 shows strong contrast-dependence with the dose 

fraction varying from 70% at low-contrast to 5% for the high-contrast bone insert. 
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The resolution value for calculating dose reduction potential is an arbitrary choice.  

The MTF area value displayed in figure 7 was chosen as it lies near the middle of the 

noise-resolution curves.  Paper II compares the dose reduction potential for different 

resolution points along the noise-resolution curves.  Paper II also investigates the 

dependence of the dose reduction potential on the choice of MTF integration limit used 

for calculating the resolution surrogate metric.  While the value of reported dose 

reduction is shown to depend on these choices, the general trend of contrast-dependent 

dose reduction potential for edge-preserving penalty functions remains. 

 
Figure 7.  Dose fraction curves for AM-100 and AM-700.  The contrast-dependent nature of the strongly 
edge-preserving AM-700 penalty function is clearly seen. 

2.3. Discussion 

For both log-cosh penalty shapes, the AM noise-resolution curves lie below the FBP 

curves.  Thus, AM will reconstruct images with less image noise than FBP for matched 

resolution.  As discussed in the introduction, an algorithm that reconstructs images with 

less image noise (random error) is advantageous for quantitative CT applications and for 

reducing patient dose without sacrificing image quality. 

Edge-preserving penalty functions are designed to generate contrast-dependent 

resolution.  This work is the first to clearly illustrate how the reported advantage of edge-

preserving penalized likelihood methods can be highly dependent on the contrast of the 

object for which resolution is quantified.  All previous noise-resolution studies to 
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illustrate statistical reconstruction advantage in x-ray CT12-14 do so for high-contrast 

objects such as bone or steel bb’s.  As shown in figure 6, the resolution for low-contrast 

structures can be much lower than high-contrast structures for edge-preserving penalties.  

The results here imply that when comparing the noise-resolution tradeoff of an edge-

preserving penalized likelihood method, the resolution should be quantified using objects 

with contrast relevant to the intended clinical task.  For the soft-tissue segmentation task 

in radiation oncology, balancing noise and low-contrast resolution is particularly 

important. 

A difficulty in penalized reconstruction methods is choosing optimal parameters to 

control the penalty function shape.  The log-cosh penalty function used here controls the 

amount of edge preservation by the parameter , which defines the transition point to 

linear growth.  Thibault et al.13 present a novel penalty function formulation with three 

parameters.  The three parameters define the transition point as well as the penalty 

growth in both low- and high-contrast regions allowing more control over the penalty 

shape.  Future work could extend the methods of comparing noise-resolution tradeoff 

developed here to investigate other local neighborhood penalty shapes, non-local 

penalties75, or anisotropic penalty weighting78. 

The very different shape of the edges reconstructed with the strongly edge-preserving 

penalty function (figure 4) made it difficult to use conventional measures of edge 

sharpness as surrogates for resolution.  Edge-preserving penalty functions have been 

noted to reconstruct images with a noise texture that can be objectionable to observers 

who are accustomed to viewing FBP reconstructions13.  An interesting question for future 

work would be what effect the different edge shape has on the diagnostic utility of the 

image.  Ideal observer models that use the MTF and noise-power spectrum (NPS) to 

calculate a detectability index have been shown to correlate well with human observer 

performance in CT lung nodule detection79.  These ideal models may provide a 

mechanism to link physical performance metrics, e.g. MTF and NPS, to observer 

performance potentially allowing task-based optimization of reconstruction parameters. 
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3. Implementation and validation of a polyenergetic SIR 

algorithm on a commercial CT scanner 

3.1 Background 

The beam-hardening (BH) artifact was recognized soon after the introduction of the 

first clinical CT scanners2.  Correction schemes encounter difficulty due to the fact that 

the BH artifact is dependent on the size and composition of the object.    Pre-processing 

methods attempts to linearize the data prior to FBP3, but are limited by the common 

assumption that the object is water equivalent.  Post-processing approaches use an initial 

reconstruction to segment the image into soft-tissue and bone.  The data can then be 

corrected based upon the estimated amount of bone along each projection ray80.  Dual-

energy imaging can also be used to eliminate the beam-hardening artifact by modeling 

the energy-dependent information of each image voxel81.  However, DE methods require 

an additional scan and are highly sensitive to noise and errors as shown in the following 

chapter.  Stonestrom et al. presents a good overview of BH correction methods82.  

Statistical reconstruction algorithms seem well-suited to reducing systematic errors from 

beam-hardening as they can incorporate the root cause of BH, the polyenergetic 

spectrum, in the forward model. 

De Man et al.15 presented a maximum-likelihood method that incorporates an 

estimate of the polyenergetic x-ray spectrum in the forward model.  An ideal x-ray 

spectrum provided by the vendor was used.  Noiseless, scatter-free simulations were used 

to assess the effectiveness of the polyenergetic SIR algorithm in alleviating cupping and 

streaking artifacts from BH relative to a known truth.  Real transmission data from 

scanning a plastic cylinder containing high-Z inserts and a human skull phantom was also 

acquired on a commercial Siemens scanner.  The real data results show polyenergetic SIR 

effectively reduced cupping and streaking artifacts, though only qualitatively. 

Another polyenergetic statistical method is presented by Elbakri et al.16,83.  

Simulation studies were employed to quantify the systematic error in reconstructed 

intensities due to BH.  The polyenergetic SIR method results in less root mean square 
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error than conventional FBP and a post-processing method that segments the image into 

bone and tissue.  The simulation experiment was also used to illustrate the sensitivity of 

reconstruction to spectral mismatches, which is further addressed in the following 

sections.  Finally, real data of a 15 cm diameter water phantom was acquired on a table-

top x-ray CT system.  The polyenergetic SIR algorithm was shown to estimate the 

density of potassium phosphate solutions of varying concentration to within 1.2%, 

whereas FBP error was around 20%. 

While encouraging, the literature to date on polyenergetic statistical reconstruction 

seems to only assess the criterion that image intensities for a given material be consistent 

within an object.  As discussed in the introduction, quantitative applications also require 

image intensity for a given material to be independent of object size and location within 

the FOV.  Furthermore, the absolute quantitative accuracy of the polyenergetic SIR 

methods is investigated only in simulation studies or limited data cases acquired on 

experimental CT systems. 

3.2. Methodology and results 

 The aim of this project is to assess the accuracy with which the polyenergetic AM 

algorithm can reconstruct data acquired on a commercially available CT scanner.  The 

polyenergetic x-ray spectrum of the scanner must be estimated to “commission” the 

algorithm for polyenergetic AM reconstruction of real data.  As a first step, homogeneous 

cylindrical phantoms are used to quantify the polyenergetic AM algorithm’s accuracy.  

Systematic errors are also compared between the polyenergetic AM and FBP algorithms 

for a range of quantitative CT consistency criteria.  Details regarding methodology and 

results can be found in paper III. 



www.manaraa.com

 

37 

The polyenergetic forward model 

The log-cosh penalized AM algorithm as described in chapter 2 and Appendix 1 is 

utilized here.  This chapter incorporates the polyenergetic x-ray spectrum 0 ( , )I Ey  and 

scatter ( ) y  into the forward model: 

0
1

( : ) ( ) ( , ) exp ( | ) ( ) ( )
N

i i
E x X i

g I E h x E c x 
 

       
 

 y c y y y . (1.5) 

An accurate estimate of the x-ray spectrum is necessary to obtain quantitatively 

accurate image intensities16.  If the mean energy of the spectrum is too high, the 

reconstructed image intensity will be overestimated to compensate for the additional 

penetrating power of the over-hardened spectrum estimate.  The same logic follows for a 

spectrum estimate that is softer than the actual spectrum.  The methods for estimating the 

x-ray spectrum and scatter are discussed below, and some considerations necessary to 

achieve accurate polyenergetic AM reconstruction of real data are highlighted. 

To test the absolute accuracy of the AM algorithm reconstructing real data, the 

forward model uses a single-basis image model that is matched to the material 

composition of the test phantom: 

( , ) ( ) ( )phantomE E c  x x . (1.6) 

In this case, the pixels occupied by the phantom material will ideally have 

reconstructed image intensity of c(x)=1.0.  This gives us a ground truth to assess how 

well the polyenergetic AM algorithm has been “commissioned” for reconstruction of real 

data. 

Experimental setup summary 

Homogeneous cylindrical phantoms of water, PMMA and Teflon are used to assess 

the accuracy of the polyenergetic AM algorithm as shown in figure 8.  The water cylinder 

consists of 20.3 cm (diameter) of water enclosed by 6 mm of acrylic.  PMMA cylinders 

of four diameters [5.1 cm : 30.5 cm] and Teflon cylinder of three diameters [5.1 cm : 17.8 

cm] are used to evaluate the consistency criterion that intensity be independent of object 
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size.  The consistency criterion that intensity be independent of location within an object 

is evaluated by comparing intensities in the center and periphery of the homogeneous 

cylinders.  The cylinders are scanned both centered in the FOV and shifted 9 cm to assess 

the criterion that intensity be independent of location within the FOV. 

 
(a)  

(b) 
Figure 8.  Homogeneous phantoms used for validating polyenergetic AM reconstruction on the Philips 
Brilliance scanner. (a) The PMMA cylinders set up for scanning.  (b) The Teflon cylinders in the 
foreground with the water cylinder’s acrylic shell in the background. 

 

In this project, all data was acquired on the Philips Brilliance Big Bore CT scanner in 

VCU’s radiation oncology department with an axial protocol, (identified as “axial pelvis 

protocol” by the vendor’s software) with detector slice thickness of 0.75 mm and beam 

collimation of 3.0 mm, allowing 4 slices per rotation to be acquired.  Three clinically 

available tube potentials were investigated; 90 kVp, 120 kVp and 140 kVp.  Proprietary 

software provided by Philips Healthcare allowed any of the standard data preprocessing 

corrections to be applied or omitted.  Two sets of processed data were generated from 

each raw dataset; one with the Philips water-equivalent BH correction turned on for 

conventional FBP reconstruction, and one with the BH correction omitted for 

reconstruction with the polyenergetic AM algorithm.  Four reconstructions of each CT 

dataset were performed: 
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 AMSc-OFF:  polyenergetic AM with no scatter estimate 

 AMSc-ON: polyenergetic AM with a constant scatter estimate 

 FBPBH-ON: FBP from BH-corrected data 

 FBPBH-OFF: FBP of BH-uncorrected data 

The most direct comparison of AM and FBP reconstruction is between the AMSc-OFF 

and the FBPBH-ON reconstructions as both attempt to correct for beam-hardening, but not 

for scatter.  No scatter correction is used for FBP reconstruction as the Brilliance scanner 

utilizes a 1-D anti-scatter grid (ASG) for physical scatter rejection and does not employ 

any scatter correction to the data. 

X-ray spectrum measurement 

The x-ray spectrum, 0 ( , )I Ey , required by the polyenergetic AM forward model was 

obtained by fitting  the semi-empirical Birch-Marshall spectrum model84, including 

tungsten characteristic x-rays, to narrow-beam attenuation curves measured through high 

purity aluminum and copper filters.  The “equivalent x-ray spectrum”85,86 is thus an 

idealized spectrum that matches the attenuation properties of the actual spectrum.  The 

BM spectrum model is parameterized by the known anode angle and two unknown free 

parameters, tube potential (kVp) and millimeters of inherent aluminum filtration (mmAl).  

A model was used to calculate the expected transmission of a particular BM spectrum 

passing through each metal filter, which included first-order corrections for energy-

integrating detectors and detector sensitivity.  An exhaustive search over the spectrum 

parameters mmAl and kVp was performed to minimize the difference between modelled 

transmission and measured transmission.  As discussed in more detail in paper III, the 

fitting of an equivalent x-ray spectrum to measured attenuation data is found to give 

results with comparable accuracy to Monte Carlo simulation or direct spectrum 

measurement. 

Transmission of the Brilliance scanner’s x-ray beam was measured through fifteen 

aluminum filters and fifteen copper filters.  The maximum thickness for each material, 

4.3 cm for Al and 1.5 cm for Cu, were chosen to attenuate the beam to roughly 10-3 of its 

primary intensity. Narrow beam geometry was achieved by use of a collimator assembly 
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(figure 9a) that was hung off the front of the CT table to avoid table attenuation and 

scatter.  Transmission ratios were obtained by taking the ratio of the measured signal with 

and without the filter in place. The CT detector array is used for transmission 

measurements versus an independent ionization chamber to form a closed measurement-

model loop.  This allows the equivalent spectrum fitting to compensate for errors between 

the simple transmission model and the actual detector sensitivity. 

Transmission measurement and equivalent spectrum fitting was only performed for 

the CAX detector location.  The resultant equivalent spectra (shown in figure 9b) fit the 

measured data to within 1.35% RMS error for all three tube potentials.  For detectors 

away from central-axis, both the mean energy and the fluence will be significantly 

modulated by the bowtie filter.  The central axis spectrum was computationally hardened 

for off-axis detectors using the known material and geometry of the bowtie filter and a 

1/ cos  correction for oblique filtration through the slab of equivalent aluminum 

filtration.  The modelled and measured air profiles were found to be in good agreement 

(paper III). 

In his dissertation regarding the polyenergetic AM algorithm, Liangjun Xie87 shows 

that the mean energy of the estimated spectrum needs to be within 2 keV of truth to 

maintain reconstructed image accuracy of 2%.  Thus, to achieve the 0.5% accuracy 

demonstrated later, the equivalent spectrum fitting required careful consideration.  For 

example, the aluminum filters were found to contain approximately 0.5% Fe by mass.  

Neglecting to account for the Fe contamination in the transmission model was found to 

lower the mean energy of the best-fit spectrum by 1.9 keV. 

The presence of the bowtie filter compounds this effect as the mean energy of the 

spectrum will vary widely over the source-detector array.  Inadequate modeling of the 

spectrum across the detector array will cause systematic artifacts relative to the imaging 

axis for AM reconstruction.  The excellent agreement of measured and modeled air 

profiles shown in paper III, give us confidence that we are modeling the geometry of the 

BT filter correctly.  However, the ultimate test of the accuracy of the CAX spectrum 
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estimate and off-axis hardening model is in the accuracy of the reconstructed image 

intensities. 

 
(a) 

 
(b) 

Figure 9.  (a) The collimator assembly for transmission measurements used in fitting the equivalent 
spectrum model. The lead collimators are ¼” thick to block scattered radiation.  The collimator opening 
is ¼” wide allowing approximately 5 to 6 detectors to be irradiated per view, and ¾” long in the z-
direction.  (b) The Equivalent Birch-Marshall x-ray spectra for the three nominal tube potentials 
investigated in this work.  All three spectra were normalized to have unit area for this plot. 

Scatter measurement 

The Philips Brilliance scanner uses a 1-D anti-scatter grid for physical scatter 

rejection.  While efficient at rejecting large angle scatter, a non-negligible component of 

scatter is from small-angle coherent scattering88 which will bypass the ASG foils. The 

residual scatter signal is experimentally measured with a beam-stop technique89,90.  A ¼” 

thick block of lead absorbs the primary radiation, P, incident on the phantom.  Measuring 

the signal with and without the lead beam-stopper allows the source of the detected signal 

to be separated into primary, P, and scattered, S, radiation components.  Refer to paper III 

for the detailed methodology and results. 

Two important considerations must be made when using a beam-stop technique to 

measure scatter.  The first is due to the presence of off-focal radiation P’, for example 

from scattering within the bowtie filter. As shown in figure 10, off-focal radiation has the 

potential to bypass the lead beam-stopper and contribute to the detected signal.  Note that 

the scatter angles in the figure are exaggerated.  Off-focal radiation, is present in the 

absence of a scan subject, and is thus considered as effective primary radiation.  The off-
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focal signal can be measured by scanning the lead beam-stopper in air and was estimated 

to comprise 1.7% to 2.2% of the effective primary signal for the varying tube potentials, 

which is in agreement with the literature90.  If not accounted for, the off-focal radiation 

will be counted as object scatter, representing an additive error, leading scatter to be 

overestimated by 1.7% to 2.2% for all object sizes. 

The physical presence of the lead beam-stopper can also systematically bias the 

scatter estimate if not accounted for.  Due to shadowing of the lead beam-stopper, the 

amount of off-focal radiation and scatter produced in the object are both reduced.  To 

account for this effect, the beam-stop measurement is made with lead blocks of varying 

width.  A linear fit is then used to extrapolate to a beam-stopper of zero width.  If 

neglected, blocker shadowing leads to systematically under-estimated scatter 

measurements.  The effects of blocker shadowing and off-focal radiation, while opposite 

in direction, are not compensatory.  The blocker shadowing effect is object-dependent, 

while the off-focal effect is not.  Both corrections must be made to accurately estimate 

scatter. 

 
Figure 10. Diagram of the scatter beam-stopper method for scatter measurement.  The primary radiation P 
is absorbed by ¼” of lead allowing the scattered radiation, S, to be estimated.  Off-focal radiation P’ 
bypasses the beam-stopper and will mimic scatter if not accounted for.  The shadowing of the beam-
stopper, shown as the light gray area, is accounted for by performing beam-stopper measurements for 
varying stopper widths and extrapolating to a zero width blocker. 

 

In this work, scatter was measured for all phantom cylinders at all three tube 

potentials on the central axis (CAX) detector location.  Only the largest PMMA and 

Teflon cylinders, with diameters of 30.5 cm and 17.8 cm respectively, were estimated to 

have a scatter-to-primary ratio (SPR) greater than 1% ranging up to 3.6%.  Scatter 
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estimates provided to the AM forward model were assumed to be constant for all gantry 

angles and detector locations. 

Radial averaging method 

The radial symmetry of the cylindrical phantoms is exploited to assess the systematic 

deviation of image intensities within each object.  Pixels within the reconstructed 

cylinder are binned according to their distance D to the cylinder centroid, and the mean 

intensity for all pixels within each bin.  Plotting each radial bin mean as a function of 

distance to center gives the mean profile.  As shown in figure 11, the mean profile 

effectively reduces the effect of image noise, allowing the systematic cupping artifact to 

be visualized. 

(a) 
(b) 

Figure 11.  Illustration of the radial averaging method for reducing image noise to assess systematic 
intensity deviations.  (a) FBPBH-ON image of the 17.8 cm Teflon disk at 120 kVp which shows 
appreciable cupping.  The red annulus shows the pixels within one of the radial bins used for averaging.  
The blue dotted line shows the location of a traditional line profile.  (b) Shows how the mean profile 
reveals the structure of the cupping that is difficult to detect from a line profile due to image noise. 

Polyenergetic AM accuracy 

Recall that the polyenergetic AM algorithm here uses a single-basis object model 

matched to the material of the cylinder being scanned, in which case the reconstructed 

image intensity within the phantom is expected to be c(x)=1.0.  Figure 12 plots the mean 

AM profiles for two cylinder cases.  It is seen for the 15.9 cm PMMA cylinder at 90 kVp 

(SPR = 0.4%), the mean reconstructed image intensities are well within 0.5% of expected 
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with and without the scatter estimate.  However, for the largest Teflon disk (17.8 cm) at 

140 kVp, which has a SPR of 2.7%, a scatter estimate is needed to remove residual 

cupping and bring mean intensity throughout the cylinder to within 0.5% of expected.  

The examples shown in figure 12 illustrate the general finding that a scatter estimate is 

needed to bring accuracy to within 0.5% when SPR is greater than 1%.  Paper III presents 

the mean profiles of AM and FBP for all cylinder materials and diameters at 120 kVp. 

(a) (b) 
Figure 12.  Mean profiles of the polyenergetic AM algorithm for (a) the 15.9 cm PMMA cylinder at 90
kVp and (b) the 17.8 cm Teflon cylinder at 140 kVp.  Including the scatter estimate improves the accuracy
of the AM image intensities, especially for the largest Teflon cylinder shown here that has a SPR of 2.7%. 

 

The percent error of each AM radial bin mean is calculated in relation to the expected 

truth intensity of 1.0.  The overall accuracy of polyenergetic AM reconstruction is 

summarized by plotting the cumulative distribution of all radial bin errors in figure 13.  

The radial bins for all materials, object sizes, and tube potentials are grouped together.  

AM reconstruction using a constant scatter estimate from the beam-stop measurements is 

shown to bring most (90%) of the radial bins to within 0.45% of truth compared to AMSc-

OFF with 90% of radial bins within 0.84% of truth.  The reduction in bias from scatter 

correction is greatest for larger disks where SPR was greater than 1%. 

The largest residual errors in the tails of the CDFs in figure 13 are due to two error 

trends observed in both AM and FBP reconstructions.  One trend is that image intensity is 

systematically underestimated for peripheral pixels of the 5.1 cm PMMA and Teflon 
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cylinders in air.  The roll-off of the smallest cylinders in air is observed in both PMMA 

and Teflon, at all tube potentials, and in all FBP and AM reconstructions.  When 

reconstructing 2.5 cm cylinders in the 20.3 cm water background, the peripheral roll-off 

is not observed.  The error trends are illustrated and discussed in more detail in Paper III.  

As both reconstruction algorithms exhibit the same error trends, it is not thought to be an 

inherent limitation of the AM algorithm. 

 
Figure 13.  Cumulative distribution functions of the mean error.  Radial bins from all materials, all cylinder 
diameters and all kVp’s are grouped together (N=195).  The constant scatter correction is seen to bring 
most of the radial bin means to within 0.5% accuracy. 

Comparison of AM and FBP consistency 

Figure 14 displays the mean profiles for the 20.3 water and 11.4 cm Teflon cylinders 

at 120 kVp.  The profiles are normalized to the centermost radial bin mean to illustrate 

the variation of mean image intensity across the homogeneous uniform cylinders.  The 

effect of the vendor’s BH correction is seen by comparing FBPBH-ON and FBPBH-OFF.  The 

BH correction is seen to bring mean intensity variation across the water cylinder to 0.5% 

for the water cylinder, but for the higher atomic number Teflon cylinder the mean 

intensity varies more than 1.25%.  The implicit beam-hardening correction of the 

polyenergetic AM algorithm reconstructs these cylinder cases with mean intensity 

variation well below 0.5%. 
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(a) (b) 
Figure 14.  Relative mean profiles (normalized to centermost bin mean) illustrate the systematic cupping 
artifact.  All four reconstruction algorithms are compared for (a) the 20.3 cm water cylinder at 120 kVp 
and (b) the 11.4 cm Teflon cylinder at 120 kVp. 

 

The Uniformity Index (UI) is calculated as the percent difference between the most 

central and peripheral bin means.  Figure 15 summarizes the results for each algorithm by 

plotting the CDF of uniformity for all cylinder cases.  The most direct comparison 

between FBP and AM is for FBPBH-ON and AMSc-OFF as both attempt to correct for beam-

hardening, but not scatter.  The polyenergetic AM algorithm is shown to reconstruct the 

uniform cylinders with less mean variation than FBP.  Note that the largest UI values for 

the AM algorithm are due to the two error trends discussed in paper III, not cupping.  For 

FBP, the largest UI values are from cupping in the Teflon cylinders. 
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Figure 15.  Cumulative distribution functions of the Uniformity Index (UI) for all reconstructed cylinders 
(8 cylinders at 3 tube potentials) sorted by reconstruction algorithm. 

 

The presented results are with the cylinders centered in the FOV.  The accuracy and 

uniformity were also investigated for reconstructions when the cylinders were shifted 9 

cm away from the FOV center.  As illustrated in paper III, the shifted cylinder intensities 

on the edge proximal to the FOV center are seen to be systematically underestimated by 

0.5% to 1.5%.  This error trend was observed in the shifted cylinders for all materials, 

sizes, tube potentials, and reconstruction algorithms.  When shifted from the FOV center, 

the scatter can no longer be assumed to be symmetric across the detector array or 

constant for each gantry angle, thus the proximal edge depression may be alleviated by 

incorporating detector and gantry angle dependent scatter estimates in image 

reconstruction. Excluding the proximal edge AM accuracy and uniformity results for the 

shifted cylinders were nearly identical to the case of the centered cylinders. 

The effect of object size is also well illustrated in paper III.  It is shown that FBPBH-ON 

reconstructs the range of PMMA cylinders [5.1 cm to 30.5 cm] to have overall mean 

intensity within 0.75% of each other.  However, for the Teflon cylinders [5.1 cm to 17.8 

cm] mean intensity using FBPBH-ON varies up to 2.5%.  In comparison, polyenergetic 

AMSc-OFF reconstructs the range of both PMMA and Teflon cylinders with overall mean 

intensities that vary less than 0.5% across all cylinder diameters. 
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3.3. Discussion 

In support of quantitative CT applications, the results of this project show that 

polyenergetic AM reconstruction of energy-uncompensated data better meets a range of 

consistency criteria than FBP reconstruction using a commercially available BH 

correction.  AM intensity showed less dependence on location within an object as 

evidenced by the comparison of uniformity within the homogeneous cylinders.  AM also 

demonstrated consistently less object-size dependence (< 0.5%), especially for the high-Z 

Teflon cylinder where FBP was found to deviate up to 3%.  The shifted cylinders showed 

similar accuracy and consistency results as the center cases, illustrating independence on 

location within the FOV.  However, the shifted cylinders were observed to suffer 

systematic underestimations of ~ 0.5% to 1.5% on the proximal edge that is thought to be 

due to asymmetric scatter.  Quantitative applications in which the target tissue is near the 

periphery of the patient will need to consider this effect, for example DE cross-section 

estimation for breast brachytherapy. 

Assessing reconstructed AM intensities relative to a ground truth is necessary to 

ensure that the x-ray spectrum, which varies significantly across the detector array due to 

the bowtie filter, is estimated as accurately as possible.  The results showing that 

polyenergetic AM reconstructed cylinders over a range of materials and sizes within 

0.5% of expected are exciting considering the sensitivity to spectral mismatch87.  This 

gives us confidence in the central-axis spectral estimates and the model employed for off-

axis spectral hardening due to the bowtie filter, supporting future polyenergetic AM 

research with data acquired on our Brilliance CT scanner. 

However, as discussed in paper III, AM reconstructed intensities will have a different 

interpretation when using a single-basis object model, equation (1.6), that is not matched 

to the scan subject material and will thus have different energy-dependence.  From the 

forward model, equation (1.5), the AM image intensity using mismatched object-basis 

materials can be expected to represent the spectrum-weighted ratio of subject and object-

model linear attenuation coefficients.  This is similar to the interpretation of FBP 

intensities as attenuation coefficients at the spectrally-averaged effective energy.  

Preliminary investigations have found support for this interpretation of mismatched 
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single-basis AM intensities.  For future work, an interesting question to investigate would 

be the effect on polyenergetic AM image quality.  Also, more complex object models 

could be investigated, for example, representing the object as a weighted sum of N=2 

basis materials, using mass constraints to condition the single-energy CT 

reconstruction16. 

Scattered radiation was demonstrated to cause residual systematic underestimations.  

Even with a highly collimated beam (3.0 mm width in the z-direction) and a 1-D ASG, 

SPR greater than 1% was observed for the largest PMMA and Teflon cylinders and was 

sufficient to compromise quantitative accuracy.  Methods to estimate and correct for 

scatter will be even more important for quantitative applications involving large scan 

subjects or utilizing cone-beam geometries that inherently accept more scatter. 
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4. Assessment of a post-processing DECT method for photon 

cross-section estimation on a commercial CT scanner 

4.1. Background 

The core of any quantitative dual-energy CT measurement technique is a 

parameterized representation of the linear attenuation coefficients which describe the 

radiological properties of the scanned object.  The parameters and associated basis 

functions can be related to physical material properties, such as electron density and 

effective atomic number50; interaction processes, such as photoelectric absorption and 

Compton scattering91; or as a weighted mixture of two known basis materials92.  CT 

measurements at two energies, which represent linear attenuation, can then be used to 

solve for the unknown model parameters. 

Parameterization by effective atomic number and electron density is physically 

intuitive as they are directly related to the interaction processes of x-ray attenuation.  In 

this work, we are concerned mainly with the ability of the models to accurately fit tissue 

attenuation coefficient data as the accuracy of attenuation coefficients can be directly 

related to the accuracy of our intended application of dose calculation93.  Williamson et 

al.’s study showed that parameterization by Zeff and e can lead to attenuation coefficient 

errors on the order of 5% to 10% in the range of interest for low energy brachytherapy 

sources54.  An alternative model of representing a substance as a mixture of two well-

chosen basis materials, the basis vector model (BVM), was found to fit energy absorption 

coefficients to within 1% for low-Z materials and isolated errors of 1% to 5% for high-Z 

materials when using ideal dual-energy image sets54. 

Recently, Goodsitt et al. reported on their experience using a commercially available 

GE dual-energy CT scanner to estimate low-energy cross-sections (in the form of 

synthesized monochromatic images) for known tissue-equivalent phantom materials57.  

Photon cross-section estimates were assessed at a number of energies between 40 keV 

and 120 keV, with reported accuracies between 1% and 20%, mainly depending on the 
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test material of interest.  The GE dual-energy system employs a pre-reconstruction 

method, i.e., the model operates on the sinogram data, not reconstructed images.  The GE 

system is proprietary, meaning we don’t have knowledge of the basis materials or the 

calibration procedure used. 

The aim of this project is to assess the experimental accuracy achievable of the post-

processing photon cross-section estimation method described in Williamson et al.54 for 

data acquired on a commercially available CT scanner.  Specifically, the accuracy with 

which the post-processing method can estimate the linear attenuation coefficient of 

known test substances is investigated.  The polyenergetic AM algorithm, with expected 

performance advantages in terms of less random error from image noise and less 

systematic error from artifacts, is compared to FBP for the highly sensitive post-

processing DECT method.  As discussed in the introduction, an accurate method to non-

invasively measure photon cross-section information would be of considerable value for 

a range of medical applications including the calculation of dose from kV imaging 

procedures and low energy photon brachytherapy cancer treatment modalities. To the 

best of the author’s knowledge, this work represents the first systematic analysis of a 

post-processing method operating on dual-energy data acquired using a commercially 

available CT scanner for in vivo estimation of the linear attenuation coefficient.   

4.2. Methodology and results 

Details regarding the methodology and results presented in this chapter can be found 

in the appended paper IV. 

Post-processing DECT cross-section estimation 

The basis vector model (BVM)54,92 utilized here assumes that the linear attenuation 

coefficient of an unknown material x can be accurately represented as a linear 

combination of two basis materials denoted by  and : 

( ) ( ) ( )x E w E w E         , (2.1) 
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where w and w  are the weighting coefficients for each basis substance.  Assuming CT 

image intensity is proportional to the linear attenuation coefficient, CT images from data 

acquired at two different energies provide a set of two BVM equations: 

1 1 1

2 2 2

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

E w E w E

E w E w E

   

   

  

  

 

 

x x x

x x x
. (2.2) 

Using basis material intensities obtained from calibration scans, 

 1 2 1 2( ), ( ), ( ), ( )E E E E       , equation (2.2) can be solved on a pixel-by-pixel basis, 

resulting in a pair of basis coefficient images  ( ), ( )w w x x .  This is a post-processing 

dual-energy CT (pDECT) method as the reconstructed images are used to estimate basis 

coefficients, not the sinogram data.  From the DE basis coefficient images and known 

composition and density of the calibrated basis materials, equation (2.1) can be used to 

estimate the linear attenuation coefficient at voxel x at any energy: 

( , ) ( ) ( ) ( ) ( )E w E w E        x x x . (2.3) 

Experimental setup summary 

Solutions and solid industrial plastics of known composition and density were used to 

assess the accuracy of the pDECT estimated linear attenuation coefficients ( DE ) in 

comparison to reference values obtained from NIST ( NIST ).  The three basis materials 

and eight test substances (refer to table 1 in paper IV) investigated here represent a range 

of densities and atomic compositions representative of biological tissues.  These are 

physical realizations of the substances used in Williamson et al.’s study54 on the BVM’s 

cross-section fitting accuracy using ideal DECT measurements.  A calibrated analytical 

balance with estimated uncertainty of 0.1 mg was used to mix solutions of precise 

percent-by-mass composition and to calculate density from known sample volumes.  For 

the industrial plastic materials, an elemental analysis was obtained to account for 

impurities such as iron, which if neglected, lead NIST reference mass-attenuation 

coefficients to deviate by as much as 1.5% in the low energy range. 
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Each testing substance was scanned separately, and was immobilized in the center of 

a cylindrical water phantom using an out-of-field acrylic plate.  This is the most ideal 

geometry as basis materials are calibrated in identical geometry as the test substances.  

The head phantom geometry refers to 20.3 cm diameter of water in a 6 mm thick acrylic 

shell (total diameter of 21.5 cm).  A 26 cm x 35 cm elliptical acrylic shell was placed 

around the 21.5 cm water cylinder to test pDECT with dimensions more representative of 

a pelvic patient.  This setup is referred to as the body phantom geometry.  Figure 16 

shows the physical phantom materials and two FBP images of ethanol centered in the 

head and body phantom geometries. 

 
(a) 

 
(b) 

 
(c) 

Figure 16. (a) The phantom setup used for pDECT analysis of solution and solid plastic rods with known 
composition. FBP images at 90 kVp of the ethanol sample centered in (b) the 21.6 cm water cylinder 
referred to as the head phantom and (c) the 26 cm x 35 cm elliptical body phantom. 

 

All dual-energy CT data were acquired on the Philips Brilliance Big Bore CT scanner 

utilizing clinically available protocols and scan parameters.  The same Axial Pelvis scan 

protocol described in Chapter 3 to commission the polyenergetic AM algorithm is 

employed here using a slice thickness of 3 mm.   Dual-energy scans are obtained at 90 

kVp and 140 kVp using maximum allowable tube currents of 220 mAs and 175 mAs, 

respectively.  These acquisition parameters lead to CTDIvol dose values, as reported on 

the scanner from commissioning measurements in a pelvis phantom, of 8.7 mGy and 22.7 
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mGy at 90 kVp and 140 kVp, respectively.  To reduce the uncertainty of the basis 

material calibration measurements in the body phantom geometry, data from repeat scans 

were averaged to simulate a higher dose acquisition.  All of the test substances, unless 

otherwise noted in the following sections, were acquired with the standard acquisition 

parameters described above. 

The robustness of dual-energy methods depends on the ability to discern small 

differences in material composition, which in turn is affected by the energy separation 

between the low- and high-energy scanning spectra94.  Increasing the spectral separation 

by lowering the tube potential of the low-energy scan is limited by signal statistics, since 

a softer beam will have less penetrating power.  In this work, the low-energy scan is 

acquired at 90 kVp as it was the lowest calibrated tube potential available on the scanner.  

Based on Primak et al.’s analysis95 of additional filtration of the high-energy beam to 

improve DECT discrimination of iodine and bone, a 0.5 mm thick tin filter was designed 

to be retrofitted to the Brilliance scanner’s collimation system.  The equivalent spectrum 

method of fitting a spectrum model to measured transmission data described in Chapter 3 

and paper III was used to estimate the spectrum of the Brilliance scanner’s 140 kVp beam 

with the 0.5 mm tin filter in place.  The equivalent spectrum model was found to fit the 

measured transmission data with 1.45% RMS error.  Figure 17 shows the tin filter and the 

three equivalent x-ray spectra used in this dual-energy project.  Note that in figure 17 all 

three x-ray spectra are normalized to have unit area.  In actuality, the 0.5 mm tin filter 

reduces the total particle fluence of the 140 kVp beam to 25% of its unfiltered intensity. 

This means that DECT estimates derived using the tin filtered 140 kVp beam are not 

dose-matched to the unfiltered case, making direct comparison more difficult. 
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(a) 

 
(b) 

Figure 17.  (a) A tin filter 0.5 mm thick was designed to be retrofitted to the scanner’s x-ray collimator 
assembly. (b) The equivalent x-ray spectra used for dual-energy scanning.  Note that all x-ray spectra are 
normalized to unit area for plotting purposes. 

 

The raw dual-energy scan data, corrected only for dark current, were exported from 

the scanner for processing and reconstruction.  As described in chapter 3, proprietary 

software was used to generate two sets of processed data (both will all standard system 

corrections applied) from each raw dataset; one with the vendor’s BH correction turned 

on for conventional FBP reconstruction, and one with the BH correction turned off for 

reconstruction with the polyenergetic AM algorithm. 

As there is no vendor-supported BH correction for the 140 kVp beam with the 

additional tin filtration, FBP reconstruction is performed only for datasets acquired with 

the standard 90 and 140 kVp tube potentials.  The log-cosh penalized polyenergetic AM 

algorithm was used to reconstruct data at all three tube potentials, including the tin 

filtered 140 kVp beam.  Penalty parameters of =15 and =5x10-4 were used for all AM 

reconstructions and were chosen empirically to reconstruct images with acceptable noise 

and resolution.  As a first-order method to match resolution between AM and FBP 

images, the FBP algorithm’s filter was tuned to reconstruct images of the PMMA rod 

with similar edge sharpness as the polyenergetic AM algorithm. 

Dual-energy image pairs scanned with the 90 kVp and the un-filtered 140 kVp beams 

are referred to as the standard energy pair.  Image pairs using the 90 kVp and the tin 
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filtered 140 kVp beam is referred to as the tin energy pair.  The term DE scenario is used 

to refer to the particular choices of DE energy pair, reconstruction algorithm and phantom 

geometry for which one of the test substances is investigated. 

The basis material image intensities for each scanning energy j  ( ), ( )j jE E    

required for pDECT analysis were averaged within circular regions-of-interest (ROIs) 

centered on the material of interest, as illustrated in figure 18d.  Given a pair of 

reconstructed DE images  1 2( ), ( )E Eμ μ , the pair of BVM equations in (2.2) are used to 

calculate the basis material coefficient images  , w w .  Williamson et al.54 showed that 

the substances investigated here were more accurately represented using two pairs of 

basis materials.  Test substances with Zeff lower than water were better modeled by a 

basis pair of (,)=(water, polystyrene) while higher Z materials were represented by a 

basis pair of (,)=(water, 23% CaCl2 solution).  Pixels are assigned one of the two basis 

pairs by comparing high- and low-kVp image intensity (paper IV).  To avoid potential 

bias in comparing one reconstruction algorithm to another due to varying magnitudes of 

image noise, pixels that are known to lie within the test substance were assigned the ideal 

basis pair. 

Equation (2.3) can then be used to estimate the linear attenuation coefficient of the 

material occupying each pixel at any energy.  Figure 18 shows the coefficient images 

calculated for the 50/50 ETOH (ethanol) and water solution centered in the head phantom 

geometry.  The coefficients were calculated from AM reconstruction of the standard 

energy pair. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 18.  (a) and (b) Basis material coefficient images for the 50% ethanol (ETOH) and water solution 
centered in the head phantom calculated from AM images using the standard energies.  Coefficient images 
are windowed to [-0.1 : +1.1].  Simulated monoenergetic images can then be calculated at any energy.  
Shown here are monoenergetic images computed at (c) 28 keV and (d) 100 keV windowed to [-50% : 
+20%] of the mean water intensity.  The voxels (1x1x3 mm3) used for region-of-interest (ROI) averaging 
are highlighted in green in (d). 

Distribution of pDECT estimated linear attenuation coefficients 

For pixels known to contain one of the test substances, the bias of the linear 

attenuation coefficient estimated for a particular pDECT scenario is assessed as the ratio 

to the reference value from NIST:  ( , ) ( )DE NISTE E x .  Figure 19 compares the 

distribution of pDECT linear attenuation coefficient ratios at 28 keV using AM and FBP 

reconstruction for pixels within the PMMA rod (head phantom, standard energy pair).  

The standard deviation of the bias for pixels within the test substance gives a measure of 

random cross-section estimation uncertainty due to image noise.  The mean of the bias 

distribution is a measure of the systematic cross-section uncertainty.  Figure 19 shows 

that for this DE scenario, both AM and FBP reconstruction estimate the PMMA linear 

attenuation coefficient at 28 keV with mean bias of less than 1.4%.   However, the 

improved noise performance of the AM algorithm leads to cross-section estimates with 

less pixel-to-pixel variation than FBP (FBP = 12.2%, AM=7.5%). 
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(a) 

 
(b) 

Figure 19.  Distribution of the linear attenuation coefficient ratio at 28 keV for pixels within the PMMA 
ROI.  Here the PMMA rod was scanned in the head phantom with the standard energy pair and 
reconstructed with 1x1x3 mm3 voxel dimensions.  The bias distribution for this DE scenario is compared 
when images are reconstructed with (a) FBP and (b) polyenergetic AM. 

 

Table 2 in paper IV reports the mean and standard deviation of the bias distributions 

for each test substance at both 28 keV and 200 keV from all pDECT scenarios.  It is seen 

that the random cross-section uncertainty is larger in the body phantom, which is not 

surprising as the same scanning dose is used for both phantom geometries.  Also, low-Z 

materials tend to have a higher level of random cross-section uncertainty than the high-Z 

materials; a result that is illustrated later in this chapter. Table 2 in paper IV further 

supports the general result of less random cross-section estimation uncertainty when 

using AM reconstruction. 

Mean accuracy of pDECT estimated linear attenuation coefficients 

The mean linear attenuation coefficient bias averaged over all pixels within the test 

substance ROI, ( )
( )

DE ROI

NIST

E
E





 
 
 

x , is plotted as a function of energy in figure 20.  

Mean estimation bias for all eight test substances is compared here when using FBP and 

AM reconstruction (standard energy pair, head phantom geometry).  The mean bias is 

well within 1.0% for energies above 30 keV to 40 keV.  For energies below 30 keV, 

mean bias exceeds 1% rising to 2% to 3% at 10 keV for most materials and up to 6% for 

Teflon. 
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The mean bias results for all other DE scenarios are shown in paper IV, figure 4.  It is 

shown that additional filtration of the 140 kVp beam confers similar pDECT accuracy as 

using the standard, unfiltered beam.  As noted above, the scanning dose when using the 

standard and tin energy pairs is not matched due to the reduction in fluence from the 

additional 0.5 mm of tin.  However, as shown in the following paragraphs, scanning dose 

can have a marked effect on the mean pDECT accuracy and thus it may be the case that 

the benefit of increased spectral separation becomes more evident with matched dose. 

(a) (b) 
Figure 20. Mean pDECT bias as a function of energy for all test substances scanned within the head 
phantom using the standard energy pair.  Mean pDECT bias is estimated by averaging a large number of 
the 1x1x3 mm3 voxels within each test substance.  Here the accuracy of the pDECT estimation of the linear 
attenuation coefficient is compared when using (a) FBP and (b) AM reconstruction. 

 

The original results for pDECT accuracy in the body phantom geometry when using 

the same scanning dose as in the head phantom geometry exhibited large errors at low 

energies.  Errors of 20% to 60% at 10 keV are seen for some low-Z materials in Figure 

21a, which displays the mean pDECT bias in the body phantom when using FBP 

reconstruction of the standard energy pair.  Large low-energy errors in the body phantom 

were also found when using AM reconstruction of both the standard and tin energy pairs. 
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Data acquired with insufficient photon counts not only leads to unacceptably noisy 

images, but can also result in systematic streaking artifacts69.  Careful investigation into 

the reconstructed images revealed that the mean intensity within the low-Z materials was 

indeed being systematically increased due to a streaking artifact.  Current scanning 

protocols utilize the maximum tube current per rotation available, so data averaging was 

employed to simulate higher dose acquisitions.  The mean reconstructed intensity within 

the basis material ROI was found to decrease as more data was averaged prior to 

reconstruction.  Figure 21b displays the mean pDECT bias for the same scanning 

scenario as 21a (body phantom, standard energy pair, FBP reconstruction), but when the 

three basis materials and the MEK test substance were acquired with a higher effective 

scanning dose.  For figure 21b, seven scans of the same volume and four adjacent slices 

(increasing the effective slice width from 3 mm to 12 mm) were averaged together to 

simulate a higher effective scanning dose.  It is clear that adequate signal statistics is 

required to avoid systematic artifacts that can quickly sacrifice mean pDECT accuracy.   

 
(a) 

 
(b) 

Figure 21. Mean pDECT bias as a function of energy for all test substances scanned within the body 
phantom using the standard energy pair and FBP image reconstruction.  (a) When scanned using the 
standard dose mean pDECT bias is unacceptably large.  The slice width for this data is the standard 3 mm 
in z. (b) When a higher effective dose is used for scanning the basis materials and the MEK test substance, 
mean pDECT bias is substantially reduced to levels seen in the head phantom.  Here, a higher effective 
dose is achieved by averaging seven repeat acquisitions for a slice of data 12 mm wide in z. 
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Scattered radiation was also investigated as a potential source of systematic error in 

the body phantom geometry.  To test the magnitude of a scatter correction on the pDECT 

cross-section accuracy, a uniform scatter estimate of approximately SPR = 3% on the 

central axis was included in the forward model (equation (1.5)) for AM reconstruction of 

the body phantom scanned with the standard energy pair.  The scatter magnitude for the 

body phantom used here is from the measurements of the 30.5 cm PMMA cylinder used 

in chapter 3 as the two phantoms were seen to have similar attenuation as the body 

phantom geometry.  The pDECT cross-section accuracy from images using a scatter 

estimate showed negligible improvement over the accuracy from images with no scatter 

correction seen here.  This supports the argument that matching basis calibration and test 

substance geometries reduces the effect of non-linearities such as scatter in the post-

processing DE method. 

Sensitivity of pDECT estimation to reconstructed image uncertainty 

The law of propagation of uncertainty96 was used as outlined in Williamson et al. 54 to 

further investigate the sensitivity of the pDECT linear attenuation coefficient estimates to 

uncertainty in input reconstructed images.  Note that the term ‘uncertainty’ refers to the 

total uncertainty from both systematic, e.g. streaking and cupping artifacts, and random 

components, e.g. image noise.  Figure 22a plots the percent unexpanded uncertainty of 

the linear attenuation coefficient estimate (coverage factor of k=1) as a function of energy 

for all eight test substances given the same reconstructed image uncertainty.  In figure 

22a, all test substances were chosen to have the same total image uncertainty of 0.50% 

(90 kVp) and 0.25% (140 kVp).  Uncertainty for the basis materials was chosen to be 

0.07% (90 kVp) and 0.03% (140 kVp). These levels of input image-intensity uncertainty 

were chosen as they well approximate the image noises reconstructed with 1x1x3 mm3 

voxel dimension using the standard scanning protocol.  Figure 22a illustrates that for the 

same reconstructed image uncertainty, pDECT attenuation coefficient estimation is more 

sensitive for low-Z test substances that use the (water, polystyrene) basis pair than the 

high-Z test substances that use the (water, 23% CaCl2) basis pair. 

Figure 22b plots the estimated pDECT uncertainty as a function of energy, using the 

image noise measured in 90 kVp and 140 kVp images reconstructed with both AM and 
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FBP.  The MEK and 7% CaCl2 test substances are chosen as examples of low-Z and 

high-Z materials, respectively.  AM and FBP images for both materials shown here were 

reconstructed using 1x1x3 mm3 voxels acquired with the standard scanning dose.  Figure 

22b shows that the uncertainty of the linear attenuation coefficient for the high-Z 7% 

CaCl2 solution at 20 keV is 5% and 10% when using AM and FBP reconstruction, 

respectively.  For the low-Z MEK test substance, pDECT uncertainty at 20 keV is 21% 

and 35% for AM and FBP reconstruction, respectively.  Again, it is the noise advantage 

of the statistically motivated AM algorithm that results in less uncertainty of the 

estimated linear attenuation coefficient than when using FBP.   

Paper IV further utilizes the propagated error analysis to estimate image uncertainties 

necessary to achieve a target level of pDECT estimated cross-section uncertainty for each 

test material (table 3).  For example, to achieve a target cross-section uncertainty of 3% at 

20 keV for the high-Z test substances using the same standard scanning dose used here, 

image uncertainty for individual image voxels on the order of 0.30% and 0.15%, for 90 

kVp and 140 kVp respectively, would be required.  For the low-Z materials, 90 kVp and 

140 kVp image uncertainty on the order of 0.10% and 0.05% would be required.  Paper 

IV also uses the reconstructed image noises to estimate the pixel size required (assuming 

the same scanning dose is used) to reduce the image uncertainty to achieve the target 

attenuation coefficient uncertainty of 3% at 20 keV for all eight test substances.  For the 

high-Z test substances, pixels roughly on the order of 3x3x3 mm3 for FBP and 2x2x3 

mm3 for AM would be required if using the same scanning dose.  To achieve the target 

uncertainty for low-Z materials, pixels on the order of 14x14x3 mm3 for FBP and 9x9x3 

mm3 for AM would be required. 
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(a) (b) 
Figure 22.  Unexpanded uncertainty (coverage factor k=1) of the pDECT linear attenuation coefficient 
estimate from input image uncertainties.  (a) Given the same input reconstructed image uncertainty for 
each material, it is seen that some test materials are more sensitive to input errors than others.  (b) Using 
the image noise measured from the reconstructed images as the input image uncertainty, it is seen that 
the AM algorithm’s noise advantage leads to less pDECT uncertainty than FBP.  For (b) images are 
reconstructed using 1x1x3 mm3 voxel dimensions with data acquired using the standard scanning dose 
protocol. 

4.3. Discussion 

The post-processing DECT method is shown to estimate linear attenuation 

coefficients with bias of less than 1% for energies in the range of 30 keV to 1 MeV with 

errors rising to between 3% and 6% at 10 keV.  Given that the 2-parameter models 

themselves often have a model-fitting accuracy of around 1%54,55, the experimental 

results here are quite encouraging.  The mean attenuation coefficient errors here are 

slightly better than those reported recently by Goodsitt et al57.  Goodsitt reported 

synthesized monochromatic images of tissue-equivalent phantom materials to have errors 

between 1% and 20% for energies between 40 keV and 120 keV.  It is difficult to directly 

compare results as the methods differ in a variety of ways.  The test materials used, 

energy pairs and scanning doses are all different.  In addition, the GE dual-energy system 

uses a proprietary pre-processing method for which we do not have knowledge of the 

basis materials or the calibration procedure.  However, their results do support the 
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common theme that DECT attenuation coefficient estimation is highly susceptible to 

errors that can arise from varying scan subject size or even the assumed material density. 

The mean pDECT bias in this work is found to be comparable when test substances 

are scanned in smaller head-like phantoms and larger body-like phantoms, however 

adequate scanning dose must be used to maintain acceptable signal statistics.  Both the 

propagated error analysis and the experimental results in the larger phantom highlight the 

extreme sensitivity of the pDECT estimation of linear attenuation coefficients to 

reconstructed image errors.  Increasing the energy separation of the scanning spectra via 

additional filtration of the high kVp beam is shown to confer similar pDECT estimation 

performance as when using the standard energy pair, even though the total photon fluence 

of the tin filtered beam is approximately 25% of its original intensity.  Future work is 

ongoing to quantify and match the dose of the varying dual-energy scanning procedures. 

The calibration procedure used in this study, in which the basis materials are scanned 

in the exact geometry as the test substances, is the most ideal case.  Quantitative CT 

applications are known to suffer a loss of accuracy when calibration and test geometries 

are mismatched19,97 due to non-linearities, such as beam-hardening and scatter, which 

induce deviations from image uniformity.  An essential question to address in future 

pDECT studies is the effect of more complex phantoms including multiple substances in 

a given slice and varying the calibration and test geometries.  Chapter 3 showed the 

polyenergetic AM algorithm to reconstruct images with better consistency than FBP, and 

thus polyenergetic AM may reasonably be hypothesized to outperform FBP for more 

complex phantom setups. 

The noise-resolution advantage of the AM algorithm illustrated in chapter 2 directly 

leads to less random uncertainty of the cross-section estimates for a given dose and 

resolution.  FBP images can be more aggressively smoothed, however the edges will 

become blurrier.  Neighboring pixels can be averaged to reduce random uncertainty, but 

at the cost of larger grid sizes.  Thus, AM reconstruction for pDECT cross-section 

estimation can achieve a target level of random uncertainty with less image smoothing, 

smaller pixel dimensions or lower imaging dose than for conventional FBP 
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reconstruction.  The noise advantage of using statistical reconstruction algorithms is a 

crucial advantage for the pDECT cross-section estimation problem, which has been 

shown to be highly sensitive to reconstructed image uncertainty. 

Statistical reconstruction algorithms offer other possibilities for estimating cross-

section information from CT data.  While the post-processing method presented here 

operates on the reconstructed images, the AM algorithm can be modified to directly 

estimate the basis material coefficients by operating jointly on the dual-energy 

sinograms98.  The AM algorithm’s object model, equation (4.1), using N=2 materials is a 

restatement of the BVM representation of an unknown material as a linear combination 

of two basis materials ((2.3)).  The integrated dual-energy AM (iDE-AM) algorithm then 

finds the basis material coefficients that minimize the sum of the I-divergence at each 

scanning energy.  Initial simulation studies have shown that direct estimation of the basis 

components from the DE data using the iDE-AM algorithm leads to more accurate cross-

section estimation than the post-processing DECT method using either FBP or AM 

reconstruction99.  However, the current unregularized implementation of the iDE-AM 

algorithm was found to converge very slowly.  This indicates the importance of 

incorporating penalty functions and other forms of a priori information to improve the 

numerical conditioning of the problem.  The preliminary results are promising and 

certainly warrant future investigation beyond the research presented here.  Prior to 

applying the iDE-AM algorithm to real data, methods to increase the convergence rate of 

the iDE-AM algorithm will need to be explored such as regularization and ordered 

subsets. 
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5. Conclusion 

The dissertation research presented herein has focused on assessing the advantages of 

statistical reconstruction in comparison to conventional FBP for x-ray CT.  Chapter 2 

presented a simulation study of the noise-resolution tradeoff advantage of the edge-

preserving log-cosh penalized AM algorithm.  The results show that the log-cosh 

penalized AM algorithm always reconstructs images with less image noise than FBP for 

comparable resolution.  It was also shown that edge-preserving penalties can lead to edge 

shapes that are very different than FBP or quadratic penalty functions.  For the more 

conservative quadratic-like penalty shape, the AM-100 dose fraction was about 70%, 

indicating AM would require 70% of the imaging dose to reconstruct an image with 

comparable quality to FBP.  The complex dependence of MTF shape on the 

regularization penalty function form leads to significant variation of dose-enhancement 

ratios attributable to SIR on contrast level, penalty function shape, and metric used to 

quantify resolution.  Using the strongly edge-preserving penalty function, the AM-700 

dose fraction ranged from 70% to 10% when matching resolution for low- and high-

contrast structures, respectively.  The results indicate that when investigating noise-

resolution advantages of edge-preserving penalty functions, resolution should be matched 

for an object with contrast relevant to the intended clinical task. 

Chapter 3 presented results of commissioning the polyenergetic AM algorithm for 

reconstruction of data acquired on a commercial CT scanner.  Methods for accurately 

estimating the x-ray spectrum and modeling the off-axis effect of the bowtie filter were 

outlined, highlighting the care necessary to achieve accurate reconstruction.  Using a 

series of homogeneous cylindrical phantoms, the accuracy and consistency of the 

polyenergetic AM algorithm was tested for three clinically available tube potentials.  

Absolute image intensity was found to be within 0.5% of expected when using a constant 

scatter estimate.  Of interest to quantitative CT applications, the polyenergetic AM 

algorithm is shown to reconstruct images with better uniformity and less object-size 

dependence than FBP reconstruction using the vendor’s BH correction.  Though some 

errors greater than 0.5% warrant future investigation, the results give us confidence in the 
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methods for characterizing the x-ray spectrum and estimating scatter in support of future 

research using the polyenergetic AM algorithm for reconstruction of commercially 

acquired data. 

In chapter 4 the experimental accuracy of a post-processing DECT method for 

estimating photon cross-sections was investigated for data acquired on a commercial 

scanner.  The noise advantage of the AM algorithm was seen to support pDECT cross-

section estimation with less random uncertainty than FBP.  Linear attenuation 

coefficients were estimated to within 1% of reference for energies from 30 keV to 1 

MeV, with errors rising to 2% to 3% for lower energies down to 10 keV and isolated 

errors of up to 6%.  The results were similar when test substances were scanned in both 

smaller head-size phantoms and larger body-like phantoms, though the importance of 

scanning with adequate dose to maintain acceptable signal statistics was evident in the 

larger phantom.  The mean pDECT bias, quantified by averaging over a large number of 

pixels to reduce statistical uncertainty, was found to be similar when using FBP and AM 

reconstruction, likely due to the ideal procedure of matching calibration and test 

geometries.  The polyenergetic AM algorithm may show improved mean bias in future 

investigations that include more complex geometries.  The main advantage of the 

statistical AM algorithm shown here lies in the improved noise performance, meaning the 

AM algorithm can achieve a target level of uncertainty using less scanning dose, or 

smaller pixels than FBP.  Additional filtration of the high energy beam is shown to result 

in similar mean accuracy, even though the scanning dose is much lower.  Future work is 

already underway to quantify and match the scanning dose for different dual-energy 

acquisition protocols.  Still, these first experimental results of pDECT cross-section 

estimation showing mean accuracy of 1% to 6% in the 10 keV to 1 MeV energy range 

from data acquired on commercially available hardware are encouraging for future 

research. 

The research, described here as a whole, highlights the potential of statistically-

motivated algorithms to further improve the accuracy of CT reconstruction in support of 

quantitative applications.  The demonstrated noise- and systematic artifact-reduction 

advantages of the penalized AM algorithm have the potential to reduce patient dose for 
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CT imaging procedures while maintaining a high level of diagnostic utility.  A wide 

range of quantitative CT applications stand to benefit from more quantitatively accurate 

images due to statistical image reconstruction’s considerable potential for reducing 

random and systematic image uncertainties.  While much work remains to be done to 

fully realize this potential, the work presented here significantly advances SIR research. 
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Appendix 1 

 

 

 

The Alternating Minimization algorithm 

 

 A description of the Alternating Minimization (AM) algorithm is presented here.  

This is based on O’Sullivan’s 2007 paper72 to which the reader is referred for a full 

treatment of its derivation. 

The CT sinogram data space, y, is defined by the angle of each source-detector ray, , 

and each gantry angle, .  An object is represented in image space, x, as a map of linear 

attenuation coefficients, ( , )E x , that depend on spatial location, x, and energy, E.  The 

material at location x is represented as a weighted sum of N basis materials: 

1

( , ) ( ) ( ) ( ) ( )
N

i i
i

E E c E 


  x x μ c x ,   (4.1) 

where ( )i E  denotes the linear attenuation spectrum of the i-th basis material. The 

reconstruction algorithm will estimate N images that represent the partial density of each 

basis material in each voxel; ( )ic x .  Statistical iterative reconstruction (SIR) algorithms 

pose image reconstruction as an optimization problem.  Assuming photon-counting 

statistics, the Poisson likelihood given by 
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( )
( : ) ( : )

( | )
( )!

d
g

y

g
p d e

d


y
y c y c

c
y

,   (4.2) 

which describes the probability of observing the measured data ( )d y , given the expected 

mean values ( : )g y c  from the image estimate c .  Most SIR algorithms seek to find the 

image ĉ  that maximizes the log-likelihood: 

   ˆ arg max ln ( | ( : )) arg max ( ) ln ( : ) ( : )
y Y

p d g d g g


 
      

 


c c
c y c y y c y c . (4.3) 

In contrast, the Alternating Minimization algorithm seeks to identify the image that 

minimizes Csiszar’s I-divergence: 

  ( )
ˆ arg min || ( : ) arg min ( ) ln ( ) ( : )

( : )y Y

d
I d g d d g

g

   
         

    


c c

y
c y c y y y c

y c
. (4.4) 

I-divergence is an information-theoretic measure of the discrepancy between two 

functions, in this case the measured data ( )d y  and the expected data means ( )g y .  

Csiszar showed that the I-divergence is the only consistent metric to measure discrepancy 

between two functions subject to non-negativity constraints71.  Comparing equations (4.3) 

and (4.4) it is seen that the I-divergence is proportional to the negative of the Poisson log-

likelihood, meaning that minimization of the I-divergence is functionally equivalent to 

maximizing the Poisson log-likelihood.   

The forward model simulates the CT data acquisition process and is used to calculate 

the expected data means from the current image estimate.  The forward model used in 

this work is defined as 

0
1

( : ) ( ) ( , ) exp ( | ) ( ) ( )
N

i i
E x X i

g I E h x E c x 
 

       
 

 y c y y y .    (4.5) 

The system matrix, ( | )h y x , is the average distance traveled by photons crossing pixel x 

that are incident on the face of detector element  for gantry angle  and is pre-computed 
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to increase the speed of the iterative algorithm. An estimate of background events, i.e. 

scattered radiation, is represented by ( ) y , which can also vary for each source-detector 

ray and gantry angle.  0 ( , )I Ey  represents the x-ray spectrum and it also can vary as a 

function of detector location and gantry angle, for example due to the presence of a 

bowtie filter or tube current modulation.  Incorporating the x-ray energy spectrum 

directly in the AM algorithm’s forward model represents an implicit beam-hardening 

correction. 

AM is so named because the minimization (M-step) alternates between minimizing 

over an exponential family of functions,  ,  and a linear family of functions,  .  The 

exponential family of functions to describe the data model of equation (4.5) is defined as: 

0
1

( , ) ( , ) exp ( | ) ( ) ( ) ;  for 0

( ,0) ( )

N

i i
x X i

q E I E h x E c x E

q y





 

  
        

  

y y y
q

y

.   (4.6) 

Thus,  is the set of mean monoenergetic photon counting sinograms, ( , )q Ey , 

corresponding to the population of non-negative image solutions,  ( )c x .  Scattered 

counts are accounted for by the dummy energy 0E  .  The linear family of functions to 

describe the measured data is defined by:  

( ) ( , ) | ( , ) ( )
E

p E p E d
   
 

d y y y . (4.7) 

( )d is the total set of non-negative noisy monoenergetic sinograms consistent with the 

measured sinogram.  As a direct measure of the number of photons with energy E in the 

measured data is not available, the AM algorithm estimates ( , )p Ey  at each iteration.  It 

can be shown 72 that ( , )p Ey  can be inferred from the measured data ( )d y and the current 

mean sinogram estimate ( , )q Ey : 

'

( , )
( , ) ( )

( , ')
E

q E
p E d

q E



y

y y
y

. (4.8) 
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The linear family constrains the energy sum of the estimate to equal the total counts of 

the measured data.  Using the exponential family of functions to describe the data means 

corresponding to the population of solution images and the linear family to describe the 

measured data, the minimization in (4.4) can be cast as a double minimization of the I-

divergence between p  and q : 

ˆ( ) arg min arg min ( || )
q p

I
 

    
c x p q


. (4.9) 

Here ˆ( )c x is the image estimate that minimizes the I-divergence between ( , )p Ey  and 

( , )q Ey . 

Using the measured data ( )d y  along with the image estimate ( )ˆ ( )kc x  from the 

previous iteration, k , equations (4.6) and (4.8) are used to estimate the monoenergetic 

projections ( )ˆ ( , )kp Ey  and ( )ˆ ( , )kq Ey .  Backprojections of these quantities are then 

computed according to 

( ) ( )ˆ( ) ( ) ( | ) ( , )k k
i i

y E

b E h y p y E



y

x x , (4.10) 

( ) ( )ˆ ˆ( ) ( ) ( | ) ( , )k k
i i

y E

b E h y q y E



y

x x . (4.11) 

Finally, the next iterate of the image, ( 1)ˆ ( )kc x , is then calculated for each basis substance 

using a pre-computed scaling factor ( )iZ x : 

( )
( 1) ( )

( )

( )1
ˆ ˆ( ) ( ) ln

ˆ( ) ( )

k
k k i

i i k
i i

b
c c

Z b
  

    
 

x
x x

x x


. (4.12) 

For each basis substance, i, two backprojections and a forward projection are 

performed for every image update step making the AM algorithm a computationally 

intensive algorithm in comparison to FBP.  To help increase the speed of convergence, 

the AM algorithm also has the ability to perform iterations using ordered subset 

techniques100.  The general method is to break the data into M mutually exclusive subsets 
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of the projection data and perform iterations and generate image updates using these 

subsets of data.  The algorithm’s speed of convergence using the ordered subsets (OS) 

technique increases nearly as the number of subsets M.   

The penalized objective function to be optimized is defined as the sum of the I-

divergence and the roughness penalty, ( )R c : 

 ˆ( ) arg min min ( || ) ( )c q p
I R




 
  c x p q c


, (4.13) 

where  controls the relative importance of the penalty function.  The log-cosh function 

used in this work computes a penalty for a pixel x as a function of the pixel intensities in 

the local neighborhood N(x) according to 

    
( )

1
( ) ( ) log cosh ( ) ( )i i i

x x N x

R c w x c x c x


          
 x .   (4.14) 

The neighboring pixels are weighted as 1.0 for directly adjacent pixels and 0 for all other 

pixels: 

1       ; directly adjacent
( )

0      ; all others
w x

  


. (4.15) 

Incorporating the roughness penalty does not greatly increase the complexity of the 

image update step in equation(4.12).  The penalty function is minimized by setting the 

derivative of the function to zero and is numerically solved using a Newton-Raphson 

method77. 
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Purpose: In comparison with conventional filtered backprojection �FBP� algorithms for x-ray com-
puted tomography �CT� image reconstruction, statistical algorithms directly incorporate the random
nature of the data and do not assume CT data are linear, noiseless functions of the attenuation line
integral. Thus, it has been hypothesized that statistical image reconstruction may support a more
favorable tradeoff than FBP between image noise and spatial resolution in dose-limited applica-
tions. The purpose of this study is to evaluate the noise-resolution tradeoff for the alternating
minimization �AM� algorithm regularized using a nonquadratic penalty function.
Methods: Idealized monoenergetic CT projection data with Poisson noise were simulated for two
phantoms with inserts of varying contrast �7%–238%� and distance from the field-of-view �FOV�
center �2–6.5 cm�. Images were reconstructed for the simulated projection data by the FBP algo-
rithm and two penalty function parameter values of the penalized AM algorithm. Each algorithm
was run with a range of smoothing strengths to allow quantification of the noise-resolution tradeoff
curve. Image noise is quantified as the standard deviation in the water background around each
contrast insert. Modulation transfer functions �MTFs� were calculated from six-parameter model fits
to oversampled edge-spread functions defined by the circular contrast-insert edges as a metric of
local resolution. The integral of the MTF up to 0.5 lp/mm was adopted as a single-parameter
measure of local spatial resolution.
Results: The penalized AM algorithm noise-resolution tradeoff curve was always more favorable
than that of the FBP algorithm. While resolution and noise are found to vary as a function of
distance from the FOV center differently for the two algorithms, the ratio of noises when matching
the resolution metric is relatively uniform over the image. The ratio of AM-to-FBP image variances,
a predictor of dose-reduction potential, was strongly dependent on the shape of the AM’s nonqua-
dratic penalty function and was also strongly influenced by the contrast of the insert for which
resolution is quantified. Dose-reduction potential, reported here as the fraction �%� of FBP dose
necessary for AM to reconstruct an image with comparable noise and resolution, for one penalty
parameter value of the AM algorithm was found to vary from 70% to 50% for low-contrast and
high-contrast structures, respectively, and from 70% to 10% for the second AM penalty parameter
value. However, the second penalty, AM-700, was found to suffer from poor low-contrast resolution
when matching the high-contrast resolution metric with FBP.
Conclusions: The results of this simulation study imply that penalized AM has the potential to
reconstruct images with similar noise and resolution using a fraction �10%–70%� of the FBP dose.
However, this dose-reduction potential depends strongly on the AM penalty parameter and the
contrast magnitude of the structures of interest. In addition, the authors’ results imply that the
advantage of AM can be maximized by optimizing the nonquadratic penalty function to the specific
imaging task of interest. Future work will extend the methods used here to quantify noise and
resolution in images reconstructed from real CT data. © 2011 American Association of Physicists
in Medicine. �DOI: 10.1118/1.3549757�

Key words: computed tomography, alternating minimization, nonquadratic regularization, noise,
resolution
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I. INTRODUCTION

Conventional filtered backprojection �FBP� algorithms1 pro-
vide an exact solution to the inverse problem of computed
tomography �CT� under the assumption that a complete set
of noiseless transmission measurements are available, which
are linear functions of the attenuation line integral through
the patient. However, phenomena such as measurement
noise,2 scatter,3,4 beam-hardening,5 and high-contrast edge
effects6 lead to data nonlinearity and artifacts such as streak-
ing and cupping in the reconstructed image. The classic
expectation-maximization algorithm of Lange and Carson7

was formed around the statistical nature of x-ray CT data and
provided the foundation for a class of statistically motivated
algorithms that can directly incorporate many of these non-
linear signal-formation processes into their data models. The
reader is referred to Fessler’s8 overview of statistical image
reconstruction �SIR� algorithm methodology. The promise of
better image quality via a more realistic modeling of the
underlying CT physics has motivated many investigations of
statistical algorithms, despite the extensive computational re-
sources they demand.

It seems intuitive that SIR algorithms that explicitly
model CT-signal statistics would be able to reconstruct im-
ages with less noise than FBP from the same noisy projection
data set. However, it is known that the image most likely to
match the measured data suffers from excessive image
noise.9,10 A widely used approach to suppress image noise in
statistically based reconstruction algorithms is to modify the
objective function to incorporate some a priori assumptions
about the scan subject, e.g., the local neighborhood penalty
function investigated by this study that enforces the assump-
tion of image smoothness. As with any noise-reduction
method, there is an associated cost. In CT image reconstruc-
tion, one of the most tangible costs of noise reduction is loss
of spatial resolution. The degradation of spatial resolution
associated with noise reduction constitutes what we will re-
fer to as the noise-resolution tradeoff.

An algorithm with a better noise-resolution tradeoff
would have an advantage in a number of clinical situations.
Better noise-resolution tradeoff means that an algorithm can
reconstruct images from the same data with either less image
noise for similar resolution or better image resolution for
similar image noise. By extension, an algorithm that pro-
vides a noise-resolution tradeoff advantage could provide
images of comparable image quality, in terms of both noise
and resolution, from data with more noise, i.e., data acquired
with lower imaging dose, an important area of concern in
diagnostic radiology.11 Pediatric imaging and lung cancer
screening are relevant clinical scenarios where improved re-
construction techniques for low dose CT would be clinically
valuable.

SIR algorithms could also find use in quantitative CT ap-
plications. The very specific application of estimating the
photon cross-sections from dual-energy measurements has
been shown to be extremely sensitive to the accuracy of the
measured CT values.12 Cupping and streaking artifacts from
data nonlinearities such as beam-hardening and scatter rep-

resent systematic shifts in CT image intensity. The focus of
this work is to assess the suppression of random errors, i.e.,
image noise. Measurement noise can be reduced by averag-
ing over a large number of pixels within a homogeneous
region but at the expense of reduced spatial resolution. This
may, in turn, introduce large systematic dose-calculation er-
rors in low energy photon-emitting treatment modalities that
exhibit large dose gradients, such as brachytherapy. An algo-
rithm that can provide superior noise-resolution tradeoff may
prove useful in such quantitative CT applications where both
low noise and high resolution are important.

In this work, we assess the noise-resolution tradeoff, in
comparison with FBP, for the alternating minimization �AM�
algorithm,13 which provides for an exact update solution to
the objective function. A nonquadratic penalty function is
used to regularize the AM algorithm and to tradeoff noise
and resolution. Previous investigators have assessed the
noise-resolution tradeoff to evaluate SIR algorithms using
parabolic surrogates to model the Poisson log-likelihood,14,15

adaptive statistical sinogram smoothing techniques,14 and it-
erative reconstruction algorithms for cone-beam CT imaging
geometries.16,17 In contrast with these previous studies that
have quantified resolution only for high-contrast structures,
our study investigates the impact of structure contrast on the
reported noise-resolution tradeoff. An ideal monoenergetic
simulation environment is used to avoid artifacts arising
from data nonlinearity, such as scattered radiation and beam-
hardening, the goal being to isolate the smoothing effects of
the two algorithms. In this way, we form a baseline of noise-
resolution tradeoff performance for the FBP and alternating
minimization algorithms for ideal Poisson-counting projec-
tion data. Future work will extend the methods for the quan-
tification of noise and resolution in this paper to images re-
constructed from real CT data.

II. MATERIALS AND METHODS

II.A. CT image reconstruction

II.A.1. Penalized AM reconstruction

The penalized monoenergetic version of the alternating
minimization algorithm is used to reconstruct the synthetic
projection data. The AM algorithm reformulates the classic
maximization of the Poisson log-likelihood as an alternating
minimization of Csiszar’s18 I-divergence between the mea-
sured data d and the expected data means g

I�d � g� = �
y�Y

�d�y�ln
d�y�

g�y:���
− d�y� + g�y:���� , �1�

where �� is the current image estimate. The I-divergence is
the negative of the log-likelihood, meaning that minimiza-
tion of the I-divergence is identical to the maximization of
the log-likelihood. For full details of the alternating minimi-
zation algorithm, the reader is referred to O’Sullivan’s 2007
paper.13 A log-cosh penalty term is included in the AM algo-
rithm’s objective function to enforce our a priori assumption
of image smoothness
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����� = I�d � g� + � · R���� , �2�

where � controls the relative weight of the penalty function.
The roughness penalty computes a penalty for a pixel x as a
function of the pixel intensities in the local neighborhood
N�x�. The penalty chosen for this study is defined as

R���� = �
x

�
x��N�x�

w�x��

· �1

�
�log�cosh������x� − ���x����� . �3�

The neighboring pixels are weighted as 1.0 for directly ad-
jacent pixels and 0 for all other pixels

w�x�� = 	1; directly adjacent

0; all others

 . �4�

Purely quadratic penalty functions effectively suppress noise,
but tend to blur high-contrast edges as the penalty grows
quickly for large pixel intensity differences. The continu-
ously defined edge-preserving log-cosh function19 is similar
to a Huber penalty,20 which is quadratic for small pixel-to-
pixel variations, so as to suppress noise, and linear for larger
variations, so as to preserve edge boundaries. The parameter
� controls the pixel intensity difference for which the penalty
transitions from quadratic to linear growth. Increasing �
causes the transition to linear growth to occur at smaller
intensity differences. Two different values of � are investi-
gated to study the effect on image noise and resolution. We
let AM-100 denote images reconstructed with the penalized
AM algorithm with �=100, which transitions to linear pen-
alty growth for pixel differences approximately 50% of the
water background. AM-700 denotes the AM algorithm using
a log-cosh penalty with �=700, which has a growth transi-
tion for pixel differences around 10% of background. Figure
1 plots both of the log-cosh penalties investigated in this
work and a quadratic penalty function for comparison. Note
that the Lagrange multipliers used in Fig. 1 were chosen

purely for plotting purposes to showcase the different penalty
growth. Values of � for AM-700 nearly an order of magni-
tude smaller than for AM-100 were necessary to reconstruct
images with acceptable quality. AM-100 and AM-700 repre-
sent two bounds of potential clinically relevant penalty pa-
rameter value choices: AM-100 is closer in shape to a qua-
dratic penalty and AM-700 is closer in shape to a linear
penalty. Results for � values between 100 and 700 would
reasonably be expected to lie between the two presented pa-
rameter values.

To evaluate the tradeoff between image noise and reso-
lution, a set of images was reconstructed with varying log-
cosh penalty Lagrange multipliers �� in Eq. �2��. Here we
use the term smoothing strength to refer to both the Lagrange
multiplier � for the AM algorithm and the full-width at half
maximum �FWHM� of the Gaussian-modified ramp filter in
the FBP algorithm described in Sec. II A 2. For each data
case, an unpenalized AM image is reconstructed as a perfor-
mance baseline. Both penalty function parameter values of
the alternating minimization algorithm were run for 250 it-
erations with 22 ordered subsets, used to increase the con-
vergence rate.21 The number of iterations was chosen from
preliminary simulations that showed the images were well
converged.

II.A.2. Filtered backprojection reconstruction

Weighted filtered backprojection as described in Kak and
Slaney1 is used to backproject the filtered fan beam projec-
tion data. The filter H�f� is a modified ramp filter defined in
frequency space as

H�f� = s · �f � · W�f� · G�f� . �5�

Here s is a constant scale factor that ensures the image in-
tensities represent the correct units of linear attenuation
�mm−1� and �f � is the ramp function. The window function
that causes the ramp filter to roll off at f �0.9· fN �fN

=Nyquist frequency� with a raised cosine function to sup-
press high-frequency noise is given by

W�f� = �
1, 0 � f � 0.9 · fN

0.5 · �1 + cos�� · �f − 0.9 · fN�
0.1 · fN

�� , 0.9 · fN � f � fN

0, f � fN


 . �6�

Figure 2 displays the windowed ramp filter. The cosine roll-
off in the window function was incorporated to suppress
high-frequency ringing artifacts observed in prior simula-
tions at Washington University when a rectangular window
function was employed. The frequency at which the cosine
roll-off kicks in �90% of Nyquist� was chosen as the highest
frequency that suppressed the ringing artifacts in order to
retain as much high-frequency content as possible. When

compared side-by-side to reconstructions from the propri-
etary Siemens FBP, trained observers were unable to distin-
guish which FBP implementation was used for each image.
G�f� is the Fourier transform of a Gaussian smoothing kernel
that further reduces the amplitude of high spatial frequencies.
A series of images with varying levels of noise and reso-
lution is achieved by varying the FWHM of the Gaussian
smoothing kernel. For consistency, the system matrix used
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for the filtered backprojection algorithm is the same as that
used for the penalized AM algorithm.

II.B. Simulated projection data

II.B.1. Virtual CT system

The virtual third generation CT system �Fig. 3� is com-
posed of 1056 gantry positions �	� equally spaced around a
full 360° rotation. There are 384 detectors �
�, each subtend-
ing an arc angle of 4.0625 min. The source-to-isocenter dis-
tance is 570 mm and the source-to-detector distance is 1005
mm. This gives a virtual detector width of 1.2 mm and a
projected width at isocenter of 0.67 mm. The image space x
is composed of 512�512 square pixels with a length of 0.5
mm on a side, providing a field-of-view �FOV� of 256 mm.

We simulate monoenergetic projection data with no scat-
tering to avoid beam-hardening and scatter artifacts in the
image reconstruction. Simulated projection data are gener-
ated by integrating the ray-traces through the analytically
defined phantoms over the detector area

d�y:�� = I0 · �

�=
−�
/2


�=
+�
/2
exp�− �

i

�i · li�
���d
�. �7�

The phantom image �i is defined as a superposition of i
analytically defined ellipses. I0 is the number of incident
photons on the scan subject and li�
�� is the analytical path
length through the ith ellipse of uniform composition along
the ray 
�. A data-model mismatch is present as the data are
generated using an analytical forward projector and the re-
construction algorithms use discrete projection. The artifacts
from this mismatch are minimal and methods to avoid con-
tamination in the image noise and resolution metrics are dis-
cussed in Sec. II C.

Simple Poisson noise is included in the analytically ray-
traced, noiseless sinogram data by randomly varying the in-

cident photon fluence I0. Though CT-signal statistics have
been shown to follow the compound Poisson distribution,22

previous literature has shown that approximating this more
complex distribution by the simple Poisson distribution, as-
sumed by AM, does not significantly affect image quality.23

An incident fluence of 100 000 photons per detector leads to
a percent standard deviation of �0.3% for unattenuated
source-detector rays, which approximates experimentally ob-
served noise levels in projection data exported from our Phil-
ips Brilliance Big Bore CT simulator using a typical clinical
scanning protocol �120 kVp, 325 mA s, and 0.75 mm slice
thickness�. To investigate the impact of projection noise on
the noise-resolution tradeoff, noisy sinograms are generated
for I0=25 000 photons per detector �25k projection noise
case� and I0=200 000 photons per detector �200k projection
noise case�, which represent low dose and low noise imaging
protocols, respectively. Noiseless projection data are also re-
constructed with all algorithms and smoothing strengths for
use in the quantification of noise and resolution.

II.B.2. Phantoms

Two simulation phantoms were used in this work to in-
vestigate the tradeoff between noise and resolution �Fig. 4�.
Both phantoms consist of a background 20 cm diameter wa-
ter cylinder and various 2 cm diameter cylindrical inserts.
The water background is set to �=0.0205 mm−1 corre-
sponding to the 61 keV energy of our monoenergetic simu-
lation. The main noise-resolution tradeoff comparison is
made using the clock phantom, which contains eight inserts
of varying contrast. Each insert center is located 5.5 cm from
the image FOV center. The clock phantom allows us to in-
vestigate the effect of varying contrast magnitudes on the
noise-resolution tradeoff.

The radial phantom contains four contrast inserts at vary-
ing radial distances from the FOV center. Inserts with the
same contrast �+30%� and varying distance from the FOV
center �2–6.5 cm� allow us to investigate the spatial depen-
dence of the noise-resolution tradeoff.

FIG. 1. Comparison of penalty function shape for the two log-cosh penalties
investigated in this work and a quadratic penalty. Quadratic penalty func-
tions grow too quickly for large pixel differences and consequently overblur
high-contrast edges. Note that the log-cosh penalties are scaled ��� for plot-
ting purposes and do not correspond to the values used in simulation.

FIG. 2. Windowed ramp filter �no Gaussian smoothing kernel included�.
Ramp filter is rolled off for frequencies�90% of fN with a cosine function
to suppress high-frequency noise. This filter was chosen in preliminary
simulations to reconstruct images that are qualitatively indistinguishable
from Siemens clinical images.
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II.C. Noise and resolution measurement

II.C.1. Noise measurement

Image noise is assessed in the water region surrounding
each contrast insert. For an image reconstructed from a noisy
projection data set, the image noise is the standard deviation,
as a percent of the water background value, for the pixels
inside the noise region of interest �ROI�:

% noise = 100 ·

ROI

�water
. �8�

The noise ROI for each insert is an annulus that includes
image pixels in the water background lying within 4–6 mm
�inclusive� of the insert boundary, shown in Fig. 5, contain-
ing 756 pixels. A subtraction image between the noiseless
and noisy data reconstructions is used for the variance mea-
surement to remove systematic bias, such as sampling arti-
facts, from the calculation.

To reduce computational burden, spatial statistics are used
to quantify image noise in lieu of ensemble statistics. To test
this, 30 monoenergetic data sets of the clock phantom, each
with a different Poisson noise realization, were created and
reconstructed with a single smoothing strength for each of
the three algorithms. The ensemble noise in each image pixel
for each algorithm was calculated from the resultant se-
quence of 30 images. The results of this comparison showed
the use of spatial statistics within an annular ROI for noise
quantification to be an adequate approximation of the aver-
age ensemble noise around each insert. The ensemble noise
was seen to be slowly varying with radial distance from the
FOV center, which is also shown in the radial phantom re-
sults of Sec. III D. The dependence of noise on distance from
the insert edge was found to be negligible due to the circular
symmetry of the ROI and slowly varying radial dependence
of the noise.

An algorithm that can reconstruct an image of comparable
resolution with less noise from the same projection data of-
fers the clinical advantage of patient dose reduction. We as-
sume that the image noise is proportional to relative projec-
tion noise1,24 and that projection variance is inversely

proportional to the patient dose. From these assumptions, we
can formulate an answer to the question “For the same image
noise and resolution, how much can the AM algorithms re-
duce patient dose in comparison to FBP?” We calculate the
dose fraction as the ratio of AM variance to FBP variance at
a constant resolution metric value

dose fraction =

AM

2


FBP
2 . �9�

Intuitively, the ratio of variances, or dose fraction, represents
the fraction of dose necessary for the AM algorithm to
achieve the same image noise as the FBP algorithm with the
same resolution metric for the chosen contrast insert.

II.C.2. Resolution measurement

The resolution metric used in this work is based on the
modulation transfer function �MTF�. While x-ray transmis-
sion CT is not a shift-invariant linear system, we believe that

FIG. 3. Third generation virtual CT geometry. Square pixels, 0.5 mm on a
side, compose the image space denoted by x. The rays connecting source
angle 	 and detector index 
 form the sinogram space y.

FIG. 4. Simulation phantoms consist of a 20 cm water cylinder with various
2 cm diameter contrast inserts. �a� The clock phantom with eight inserts of
varying contrast allows comparison of the noise-resolution tradeoff for vary-
ing magnitude of contrast. �b� The radial phantom with four inserts of the
same contrast �+30%� and varying distance from the FOV center allows the
spatial dependence of the noise-resolution tradeoff to be investigated.
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MTF analysis as a measure of local impulse response can
still provide insight into the effect of reconstruction on edge
blurring. The radial phantom study was designed to investi-
gate the spatial variation of noise and resolution for each
reconstruction algorithm.

The edge-spread function �ESF� was differentiated to ob-
tain the line-spread function �LSF� and the Fourier transform
of the LSF was calculated to obtain the MTF

LSF�r� =
d

dr
�ESF�r�� , �10�

MTF�f� = �FT�LSF�r��� . �11�

Here r is the distance between the pixel center and the
known edge location. The circular symmetry of the contrast
inserts can be used to construct a supersampled edge-spread
function from the reconstructed image. Since our simulation
phantom is comprised of a set of circular structures, we can
plot each reconstructed image pixel’s intensity as a function
of the distance �r� between its center and the analytically
defined insert edge. As multiple pixels will have the same
distance to the edge, the mean intensity at each unique dis-
tance is calculated and used for subsequent estimation of the
MTF. Sampling pixels around a circularly symmetric insert
to form a supersampled edge-spread function represents an
average of the edge response function within the region of
interest. In this way, we can view the transition between the
water background and the contrast insert. This idea of using
circular symmetry to oversample an edge-spread function is
similar to Thornton’s use of a sphere25 to measure the in-
plane MTF and slice-sensitivity profile for a multislice CT
scanner. Figure 6 displays a flowchart illustrating the reso-
lution measurement technique for the �30% contrast insert
reconstructed with FBP �FWHM=2.0 mm�. The location of
the analytically defined insert edge is superimposed on the
reconstructed image to aid visualization.

An edge-spread function model was then fit to the super-
sampled ESF �ESFinsert�r��. While the image noise is mea-

sured on images reconstructed from the noisy projection data
sets, the edge-spread function is derived from images recon-
structed from the noiseless projection data set to avoid bias
from the image noise and to improve the model fitting. The
model fitting is used to further reduce noise from the super-
sampled ESF prior to differentiation and Fourier transforma-
tion. Although ESFs are extracted from images reconstructed
from noiseless projection data, the individual data points ex-
hibit fluctuations due to effects such as partial volume aver-
aging of finite voxels and the mismatch between data and
reconstruction forward projectors. To avoid instability in the
MTF arising from numerical differentiation of noisy data, we

FIG. 5. Each insert’s annular noise region of interest consists of the 756
image pixels whose centers lie between 4 and 6 mm from the insert
boundary.

FIG. 6. Illustration of the resolution measurement for the �30% insert re-
constructed using FBP with FWHM=2.0 mm.
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use an ESF model that assumes the line-spread function is
well-described by a linear combination of Gaussian and ex-
ponential components26

ESF†�r� = a · �1 − exp�− b · �r��� + c · �erf�d1/2 · �r��� , �12�

ESF�r� = 	 ESF†�r�; if r � 0

− ESF†�r�; if r � 0

 , �13�

ESFfit�r� = e + f · ESF�r� . �14�

The MATLAB function fminsearch is used to find the six pa-
rameters a– f that minimize the relative least-squares differ-
ence between the reconstructed image ESF and the ESF
model. The second image in Fig. 6 shows the supersampled
ESFinsert�r� and the fitted model. All contrast inserts within
an image are fitted separately. Each fitted ESF model is then
differentiated to obtain the LSF, which is then Fourier trans-
formed to calculate the MTF for the reconstructed contrast
insert of interest.

To analyze the noise-resolution tradeoff for a particular
reconstruction algorithm, i.e., how the image noise and res-
olution vary with increasing smoothing strength, it is useful
to extract a single parameter to characterize resolution for

each contrast insert in each image. This will allow us to plot
a curve of how the edge resolution is degraded as the image
noise is reduced. La Rivière14 reported the FWHM of a
Gaussian blurring model fitted to line profiles of high-
contrast bone inserts. This is an intuitive metric as a wider
Gaussian represents a blurrier edge. However, our six-
parameter Gaussian-exponential model does not lead to such
a straightforward metric.

We choose to report the area under the MTF curve up to
0.5 lp/mm as a single-value surrogate of edge resolution. The
0.5 lp/mm integration limit was chosen as it is near the fre-
quency where MTF shapes differ the most between FBP and
AM-700, as shown later in Fig. 7. It is also close to the
ACR’s accreditation requirement of 0.6 lp/mm for high-
contrast resolution. The MTF area for a particular recon-
structed insert edge is calculated as the area under the MTF
up to 0.5 lp/mm or

A0.5 =
�0

0.5 lp/mmMTF�f�df

0.5
. �15�

The MTF area is normalized to 0.5, as this is the area under
an ideal MTF curve that has amplitude 1.0 for all spatial

FIG. 7. �a� Comparison of the bone insert ESF shape for the FBP algorithm with FWHM=1.4 mm and the AM-700 algorithm with �=0.015. The corre-
sponding lines represent the Gaussian-exponential model fit used for the estimation of the MTF. Smoothing strengths were chosen for comparison as they
reconstructed nearly matched image noise ��1.09%�0.01%�. Note the difference in ESF shape between the two algorithms in �a� at nearly matched image
noise. The FBP edge-spread functions were found to be well fit by both Gaussian and Gaussian-exponential blurring models. �b� zooms in on the AM-700 ESF
fitting to show that the Gaussian blurring model had trouble fitting the steep central transition and shoulder roll-off seen in the AM-700 high-contrast edges.
This finding motivated the use of the Gaussian-exponential blurring model to fit all of the edge-spread functions in this work. �c� and �d� display the MTF
calculation for the FBP and AM-700 bone inserts, respectively.
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frequencies. Refer again to Fig. 6 for the calculated MTF and
subsequent MTF area metric of an example contrast insert.
Intuitively, the MTF area represents the fraction of ideal in-
put signal that is recovered for spatial frequencies less than
or equal to 0.5 lp/mm.

III. RESULTS

III.A. Necessity of Gaussian-exponential edge-spread
function model

Previous investigators have characterized CT image reso-
lution under the assumption of Gaussian blurring, e.g., the
FWHM of a Gaussian ESF model14 as a surrogate for reso-
lution. Our preliminary work revealed that purely Gaussian
blurring models did not fit the AM-700 high-contrast edges
well. Figure 7 illustrates the different shapes of the high-
contrast bone insert ESF and subsequent calculated MTFs as
reconstructed with the FBP and AM-700 algorithms. The
smoothing strengths of the noiseless FBP and AM-700 edge-
spread functions in Fig. 7 were chosen for comparison as
they led to nearly the same image noise ��1.09%�0.01%�
when reconstructing the 100k noisy data set.

The steep central transition and shoulder roll-off of the
AM-700 high-contrast edges was found to be poorly fit by a
purely Gaussian blurring model �Fig. 7�b�� and motivated us
to use the edge-spread function model �Eq. �12��, which as-
sumes the blurring kernel has both Gaussian and exponential
components. The Gaussian-exponential model was used to fit
all reconstructed image edge-spread functions in this work to
provide a consistent methodology. No loss of ESF fitting
quality with the Gaussian-exponential model was seen for
the edges that were well fit by the purely Gaussian model,
such as all FBP edges, all AM-100 edges, and AM-700 low-
contrast ��30%� edges.

In contrast with the FBP bone MTF �Fig. 7�c��, in which
the amplitude quickly drops, the AM-700 bone MTF �Fig.
7�d�� shows an initial drop for low frequencies due to the
rounded shoulder of the AM-700 ESF and retention of higher
spatial frequencies due to the sharp central transition of the
ESF. For high-contrast structures reconstructed by the AM-
700 algorithm, the ESF and MTF shape were found to be
markedly different than those seen in the literature.15,16,25,27

Conventional MTF metrics, such as the spatial frequency
corresponding to 10% MTF and 50% MTF, were found to
provide poor characterization of the curves, given the long
MTF tails of the high-contrast AM-700 structures. For ex-
ample, the 10% MTF for AM-700 bone insert shown in Fig.
7�d� occurs at a frequency of 2.79 lp/mm, while the corre-
sponding FBP MTF is essentially zero at this frequency. The
desire for a single-valued metric that describes a clinically
relevant feature common to all the MTF shapes characteristic
of our study motivated our use of the MTF area as a surro-
gate for resolution.

III.B. Noise-resolution tradeoff for varying contrast

For each reconstructed clock phantom image, the relative
noise in the water background and the MTF area were deter-

mined independently for each of the eight contrast inserts.
Plotting the image noise as a function of resolution �MTF
area� for a set of images reconstructed by a particular algo-
rithm with varying levels of smoothing strength describes the
noise-resolution tradeoff characteristic of the algorithm.

Figure 8 compares the noise-resolution tradeoff between
the FBP algorithm and the AM algorithm, with �=100 and
�=700 for images reconstructed from the 100k noisy projec-
tion data. The tradeoff curves for the clock phantom’s eight
contrast inserts are plotted separately to show how the
tradeoff varies with the magnitude of contrast. Each point
along a curve represents an image with a unique smoothing
strength. For display purposes, the unpenalized AM images
are not included on the AM tradeoff curves as the image
noise is greater than 6% and reduces the scale of the noise
axis. The noise in the water background around each contrast
insert within a single reconstructed image is essentially the
same. Thus, the differences seen in the AM tradeoff curves
for varying magnitudes of insert contrast are due to differ-
ences in the resolution. This is a direct result of the nonqua-
dratic local neighborhood penalty function. Also, note that
the FBP algorithm appears to have a lower achievable reso-
lution than AM; this is a result of the raised cosine roll-off
windowed ramp function used for FBP in this work.

For all magnitudes of contrast, the AM tradeoff curves lie
below the FBP algorithm curve. Both AM-100 and AM-700
reconstruct images with either less image noise for the same
resolution metric, sharper edges for matched image noise or,
by extension, images with similar resolution and image noise
for less patient dose. The AM-700 algorithm shows an in-
creasing benefit as the contrast magnitude used for resolution
comparison is increased. The clock phantom study shows us
that the noise-resolution tradeoff advantage of the penalized
AM algorithm in comparison with conventional FBP is de-
pendent on the contrast magnitude used for resolution calcu-
lation and the choice of parameter value for AM’s edge-
preserving penalty function.

III.C. Effect of projection noise magnitude

As outlined in Sec. II C 1, the potential for dose reduction
that the AM algorithm offers is calculated as the ratio of
AM-insert variance to FBP-insert variance when matching
the resolution metric for a chosen contrast insert. By apply-
ing spline interpolation to the tradeoff curves of Fig. 8, FBP
and AM noise levels for a matched resolution metric of
A0.5=0.75 were estimated. The resulting AM-to-FBP vari-
ance ratio �for all three projection noise realizations� is plot-
ted as a function of contrast in Fig. 9. The magnitude of
projection noise investigated in the three noise realizations
does not appear to have a marked effect on the advantage of
the AM algorithm. The maximum impact of low dose �25k�
and low noise �200k� imaging techniques relative to 100k is
seen for the AM-700 low-contrast structures ranging from
0.66 to 0.81 �Fig. 9�b��. This variation was overshadowed by
the variation due to contrast magnitude for the AM-700 al-
gorithm, for which the variance ratio ranges from 0.69 to
0.05 �100k projection noise realization�. Figure 9 shows that
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the potential for dose reduction is largely driven by the con-
trast magnitude chosen for matching image resolution.

III.D. Spatial dependence of noise-resolution tradeoff

The dependence of resolution, noise, and variance ratio on
spatial location is illustrated in Figs. 10 and 11. Within a

single reconstructed image, FBP noise varies more with FOV
location than the AM image noise �Fig. 10�a��. In contrast,
Fig. 10�b� shows that AM resolution increases with distance
from the FOV center, while FBP resolution is nearly spatially
constant. Figure 11 shows the spatial variation of noise and
variance ratios for AM and FBP images with a matched spa-

FIG. 8. Noise-resolution tradeoff curves for the clock phantom reconstructed with 100k projection noise. Note the reverse x-axis. As the smoothing strength
is increased, noise is reduced at the cost of reduced resolution. The tradeoff curve for AM with �=700 for the penalty function is markedly different for
structures of varying contrast.
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tial resolution metric of A0.5=0.75. For all algorithms,
resolution-matched image noise decreases with increasing
distance from the FOV center. This is not surprising, as the
projection noise for the peripheral insert locations is smaller
due to a shorter average path length through the phantom for
the source-detector rays that traverse the peripheral image
pixels. The dose fraction of the AM algorithm is nearly the
same for all four insert locations �Fig. 11�b�� with dose frac-
tions ranging from 0.65 to 0.70 for AM-100 and from 0.41 to
0.45 for AM-700.

III.E. Reconstructed image comparison

Figure 12 shows images of the simulated clock phantom
reconstructed from the 100k noisy data set with similar reso-
lutions �A0.5�0.75� around the high-contrast bone insert.
The AM-700 image noise level is only 25% of that of the
FBP image. While the AM-700 high-contrast resolution met-
ric value nearly matches that of the FBP images, the low-
contrast inserts exhibit subjectively poorer resolution than
that of the FBP algorithm. In comparison, the AM-100 algo-

rithm was found to offer comparable resolution to the FBP
for all contrast inserts, with about 70% of the noise relative
to FBP.

Note the presence of an artifact around the phantom edge
in the AM images �Figs. 12�b� and 12�c��. The literature9,28

has shown these artifacts are in fact inherent to maximum
likelihood reconstruction methods and arise from mis-
matches between the SIR algorithm’s forward model and the
true physical detection process. Zbijewski28 shows that re-
constructing on a finer voxel grid alleviates much of the edge
artifact, but this will lead to much longer computing times.
While the smallest penalty strength ��min� was found to
eliminate the edge artifact around the internal contrast inserts
for both AM-100 and AM-700, further work will be needed
to address the ringing artifact around the phantom edge if it
is determined to be of clinical concern.

III.F. Qualitative real data comparison

Real CT data includes effects from physical phenomena
such as beam-hardening and scatter, which are known to de-

FIG. 9. AM/FBP variance ratio at a matched resolution value of AMTF0.5

=0.75 for each of the eight inserts of the clock phantom. �a� and �b� display
the results for AM-100 and AM-700, respectively. The 100k projection noise
case is plotted as the baseline with the low noise �200k� and low dose �25k�
cases plotted for comparison. As can be seen, the three noise realizations
cause some variability in the dose fractions, but this is overshadowed by the
choice of penalty function parameter values and contrast magnitude effects.

FIG. 10. Results of the radial phantom study showing the spatial dependence
of �a� noise and �b� resolution within a single reconstructed image from each
algorithm. The smoothing strengths were chosen such that the resolution
metric for the reconstruction algorithms were similar for purposes of com-
parison. The AM resolution increases with distance from the FOV center,
while the FBP algorithm’s resolution does not. FBP image noise varies more
spatially than for the AM algorithm.
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grade image quality. Figure 13 illustrates the ability of the
penalized AM algorithm to reconstruct images from axial
sinograms acquired on the Philips Brilliance Big Bore scan-
ner. Smoothing strengths for the three reconstructions were
tuned to give nearly the same noise in a 2�2 cm2 square
ROI �1600 total pixels� in the center of the water region. For
the low-contrast detectability insert �6 o’clock� differences
among the three reconstructions could not be visually dis-
cerned. However, profiles through the high-contrast insert,
located at 4 o’clock, reveal sharper edge discrimination for
the AM-700 algorithm �Fig. 13�b��, which motivates future
work to investigate the noise-resolution tradeoff using real
CT data.

IV. DISCUSSION

This work compares the noise-resolution tradeoff of the
conventional filtered backprojection algorithm to that of the

alternating minimization algorithm with two different param-
eter values for a local edge-preserving penalty function. This
is not the first work comparing the noise-resolution tradeoff
between filtered backprojection and statistical iterative algo-

FIG. 11. Comparison of the noise-resolution tradeoff for varying distance
from FOV center. When compared at matched resolution �noise interpolated
to matched A0.5=0.75�, �a� the FBP and AM algorithms show similar varia-
tion of noise across the FOV and �b� the dose fraction stays nearly constant
for all inserts.

(c)

FIG. 12. Reconstructed images of the simulated clock phantom data with
nearly matched bone insert �7 o’clock position� resolution metric of A0.5

�0.75. All images set to identical �15% window �0.017:0.023� mm−1 for
display of image noise. Noise around the bone insert is �a� 2.04% for FBP,
�b� 1.36% for AM-100, and �c� 0.47% for AM-700.
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rithms. However, it is the first to do so for the alternating
minimization algorithm for x-ray transmission tomography,
which supports an exact solution to the maximization of the
Poisson log-likelihood �M-step�. The conclusions from the
simulation study presented here could reasonably be extrapo-
lated to other SIR algorithms that seek to maximize the same
penalized-likelihood objective function, since the AM solu-
tion images are very near complete convergence due to the
large number of iterations employed. It is also the first, to the
best of the authors’ knowledge, to characterize the noise-
resolution tradeoff curves and subsequent dose-reduction
factors for a range of contrast magnitudes.

In this paper, we selected the normalized MTF integral up
to a cutoff frequency of 0.5 lp/mm as a convenient, but
somewhat arbitrary, single-parameter metric for quantifying
spatial resolution. Other integration limits up to the Nyquist
frequency were considered but were found to increase the
reported AM-700 advantage due to AM-700’s longer MTF
tails for high-contrast structures. For comparing FBP and
AM resolution, the 0.5 lp/mm limit was chosen to ensure

significant overlap of the nonzero frequency content of the
corresponding MTFs, which potentially have very different
shapes and high-frequency tails. This limit was considered to
be a conservative choice for reporting dose-reduction poten-
tial. While in theory the MTF is a linear-systems metric and
CT resolution is known to be spatially variant over the
FOV,29 we believe that a MTF derived from a supersampled
edge-spread function objectively describes the spatial fre-
quency content in the local region. The concept of measuring
the MTF for structures within a CT image dates back three
decades27 and is still a topic of debate to this day. To the
author’s knowledge, no gold standard metric for quantifying
CT image resolution has been embraced by the community,
making direct comparison of our results and other works
difficult.

Not surprisingly, the log-cosh penalized alternating mini-
mization algorithm, which models detector counting statis-
tics, reconstructs images with less noise than conventional
filtered backprojection images of comparable resolution. In
contrast with other investigations that matched high-contrast
structure resolution, e.g., bone and steel beads, our study
shows that the noise-resolution tradeoff for nonquadratic
neighborhood penalty functions markedly varies with con-
trast magnitude of the edge used for quantifying resolution.
The apparent advantage of using the log-cosh penalized AM
algorithm when comparing high-contrast resolution was
found to be moderately to substantially diminished when the
resolutions of low-contrast edges were compared. Moreover,
this variation was found to strongly depend on the chosen
penalty function parameters.

Despite some loss of benefit for low-contrast objects, the
ratio of variances for high-contrast objects in this work im-
plies that the penalized AM algorithm is capable of recon-
structing images with comparable quality to FBP using 10%–
70% of the dose required by FBP, depending on the penalty
function parameters �Fig. 9�. This is compatible with the
growing clinical literature; Stayman30 reported SIR-to-FBP
image SNR ratios of about 1.6 for a PET system. For x-ray
transmission CT, Ziegler15 reported SIR-to-FBP noise ratios
of 2.1 to 3.0, implying dose-reduction factors of 4.4 to 9.0.
La Rivière14 described an expectation-maximization sino-
gram smoothing technique which achieved a noise-resolution
tradeoff similar to the adaptive trimmed mean filter
approach2 that uses 50% less dose. These studies exhibit a
range of dose-reduction factors for a number of reasons.
Since the dose-reduction factor is a ratio of variances at an
arbitrary value of the resolution metric, choosing a different
value of the resolution metric along the noise-resolution
tradeoff curve for matching will change the reported variance
ratios. In addition, there are differences between the SIR and
the FBP reconstruction algorithms used in the literature and
the metrics used to quantify resolution. In spite of these dif-
ferences, our reported dose-reduction potentials for high-
contrast structures are in reasonable agreement with the pub-
lished literature.

Varying the magnitude of noise in the projection data was
found to only minimally affect the variance ratio at a
matched spatial resolution in our simulations �Fig. 9�. In con-

(a)

(b)

FIG. 13. �a� AM-700 reconstructed image of the multipin layer of a daily
QA phantom from real data acquired on a Philips Brilliance Big Bore CT
scanner. Smoothing strengths were adjusted to match noise ��0.94% in the
central square ROI� within 0.005% among the AM-700, AM-100, and FBP
images. �b� Visible differences in the high-contrast insert �4 o’clock� are
illustrated in the profiles.
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trast, Ziegler et al.15 showed that projection noise level does
affect the SIR-to-FBP noise ratio. His work further showed
that this effect was stronger for points farther from the FOV
center than those near the center. Our range of distances from
the FOV center �2–6.5 cm� was much smaller than those in
Ziegler’s work �1.5–20 cm�. We found the contrast magni-
tude and penalty parameter choice to have a greater effect on
the variance ratio than projection noise.

As our work utilized a spatially invariant penalty func-
tion, it would be expected that AM images exhibit spatially
variant and anisotropic resolution.29 Our study of the radial
phantom shows that the resolution and noise vary differently
with distance from the FOV center of AM and FBP images
�Fig. 10�. In contrast with studies that report FBP resolution
to degrade with increasing distance,15 the FBP algorithm in
this work showed little spatial variation of resolution. This
difference could stem from slight differences in the FBP al-
gorithm or the larger range of distances to FOV center that
Ziegler investigated. The variation of AM resolution with
distance from the FOV center �Fig. 10�b�� illustrates the non-
uniform nature of the AM resolution. Interestingly, we found
the AM-to-FBP variance ratio for a fixed resolution to be
approximately constant over the FOV �Fig. 11�.

Resolution anisotropy was studied by separating the total
annular ROIs around the insert edges in the radial phantom
into four Cartesian quadrants and calculating the associated
MTFs using the same procedure described above. The quad-
rant MTFs in the FBP image were found to vary little from
the MTF of the total ROI. The penalized AM quadrant MTFs
were found to vary from one another, especially in the tan-
gential and radial directions, indicative of anisotropic reso-
lution. The AM anisotropies were found to be small com-
pared to the differences between the AM and FBP
algorithms, perhaps in part due to the highly symmetric na-
ture of the phantoms investigated here. The resolution metric
calculated from the total annular ROI represents an average
of the local resolution in the region surrounding each con-
trast insert.

Methods for designing spatially variant quadratic penalty
functions that achieve a target response have been described
in the literature and shown to support nearly uniform and
isotropic resolution for PET and transmission x-ray CT
problems.30–32 Ahn and Leahy33 reported on the design of
nonquadratic regularization penalties with similar goals in
PET.33 Design of penalty functions, both quadratic and non-
quadratic, that include the ideas of spatially variant29 and
nonlocal penalty functions20 to achieve desirable properties
such as uniform, isotropic resolution are important areas of
ongoing work for x-ray transmission CT.

The quantitative results presented in this work have been
performed exclusively in an idealized 2D x-ray CT simula-
tion environment, with projection noise assumed to follow
the simple Poisson distribution. While this data model allows
detection of very subtle effects of reconstruction algorithm
on noise-resolution tradeoffs, obviously clinical translation
requires handling complex detector nonlinearities and non-
ideal behaviors. Both the AM �Ref. 13� and parabolic
surrogates34 SIR algorithms generalize to more complex data

models which include polyenergetic spectra, scatter, and cor-
related noise, all of which are necessary to extract statisti-
cally optimal smoothed images from measured sinogram
data. SIR algorithms including the known polyenergetic
x-ray spectrum in their forward model have been shown to
outperform FBP reconstruction preceded by sinogram linear-
ization corrections in terms of nonuniformity from beam-
hardening artifacts.35 Our example clinical case �Fig. 13�
suggests �but by no means proves� that our main conclusions
are preserved, at least qualitatively, in the transition to more
realistic data models. Beam-hardening and scatter effects
manifest themselves as artifacts, i.e., systematic shifts in the
mean image intensities. While such streaking and nonunifor-
mity artifacts caused by these data mismatches play a large
role in subjective image quality and quantitative CT, we
would not expect these nonlinear processes to substantially
affect the spatial resolution-noise tradeoff characteristic of
the device. The logical next step in translating AM benefits
to quantitative CT imaging to the clinic is to repeat system-
atic studies of resolution-noise tradeoff using more realistic
data models and experimentally acquired data sets derived
from scanning phantoms of known geometry and composi-
tion. Another issue is the incorporation of 3D system geom-
etry �spiral multirow detector geometry� into the forward
SIR projector. 3D SIR algorithms have been shown to alle-
viate CBCT artifacts, e.g., incomplete data artifacts in off-
axis planes� characteristic of conventional FBP
reconstruction.17 However, the Shi and Fessler36 design of
three-dimensional penalty functions pose challenges, provid-
ing another important area of future investigation.

Long SIR computing times constitute another barrier to
widespread clinical acceptance. Recent literature describing
GE’s adaptive statistical iterative reconstruction �ASIR� al-
gorithm shows that simplified statistical algorithms can still
provide diagnostically viable images with 50% or 65%
smaller doses than needed for conventional FBP.37–39 While
the ASIR algorithm does not include modeling of the system
matrix, which can play a large role in reducing artifacts and
noise,16,17 trained observers have rated the ASIR images ac-
quired at 50% of the FBP dose to have similar, if not better,
image quality for almost all metrics studied. The literature
has shown that the simplified ASIR algorithm has the capa-
bility to reconstruct image volumes acceptable to current
trained observers in a clinically relevant timeframe of 65 s
compared to 50 s for FBP.39 For the AM algorithm, Keesing
et al.40,41 has demonstrated the feasibility of speeding up the
computation time by parallelizing the projection operations
for a fully 3D helical geometry.

Comparing the AM-100 and AM-700 results reveals the
importance of optimizing the nonquadratic penalty function
parameter �. AM-700, with a penalty that transitions to linear
growth for smaller pixel differences, shows greatly improved
noise performance over AM-100 and the FBP algorithm
when comparing high-contrast resolution. However, when
comparing images with nearly matched high-contrast reso-
lution metric values, AM-700 was seen to have worse reso-
lution for the low-contrast inserts. The log-cosh penalty
function with �=700 could be beneficial where high-contrast
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resolution is important and reduced low-contrast resolution is
acceptable, e.g., for dose reduction in image registration ap-
plications using bony landmarks. For clinical situations in
which low-contrast resolution is important, for example,
intensity-driven soft-tissue deformable image registration or
soft-tissue delineation for contouring, log-cosh penalized
AM with �=100 could provide comparable image quality
with 70% of the FBP dose. The results presented here show
the need for future work in penalty function parameter opti-
mization and those choices will certainly be task-specific.42

V. CONCLUSIONS

This work assessed the noise-resolution tradeoff of the
penalized alternating minimization algorithm in comparison
with FBP for a set of structures with a range of contrast
magnitudes ��7% to +238%� and varying distance from the
FOV center �2–6.5 cm�. An idealized simulation environ-
ment was used to isolate the effects of each algorithm’s
smoothing technique. A spatial resolution metric A0.5, de-
rived from ESFs in the reconstructed image, was developed
in response to the observation that the AM-700 MTF shape
for high-contrast edges deviates significantly from that of
FBP images. The parameter value used to specify AM’s local
log-cosh penalty function has been shown to drastically
modulate noise-resolution tradeoff curves and subsequent
dose-reduction potentials reported for SIR algorithms. The
noise-resolution tradeoff was also found to be greatly af-
fected by the contrast of the structure used for evaluating
spatial resolution. The range of projection noise levels inves-
tigated here and the variation in structure distance from FOV
center only minimally affected the noise-resolution tradeoff.
The ratio of AM-to-FBP image variance ratio for matched
resolution surrogate implies a dose-reduction potential; the
AM algorithm has the potential to reconstruct images with
comparable noise and MTF area using only 10%–70% of the
FBP dose. These values are in line with other published lit-
erature. The result that log-cosh penalized AM noise-
resolution tradeoff is dependent on the contrast magnitude
implies that nonquadratic penalty function parameters can be
optimized to maximize the dose-reduction potential for spe-
cific imaging tasks.
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ABSTRACT 
Purpose: To assess the impact of contrast magnitude and spatial resolution metric choices on the noise-resolution 
tradeoff of a non-quadratic penalized statistical iterative algorithm, Alternating Minimization (AM), in x-ray 
transmission CT. 

Methods: Monoenergetic Poisson-counting CT data were simulated for a water phantom containing circular inserts of 
varying contrast (7% to 238%). The data was reconstructed with conventional filtered backprojection (FBP) and two 
non-quadratic penalty parameterizations of AM. A range of smoothing strengths is reconstructed for each algorithm to 
quantify the noise-resolution tradeoff curve. Modulation transfer functions (MTFs) were estimated from the circular 
contrast-insert edges and then integrated up to a cutoff frequency as a single-parameter measure of local spatial 
resolution. Two cutoff frequencies and two resolution comparison values are investigated for their effect on reported 
tradeoff advantage. 

Results: The noise-resolution tradeoff curve was always more favorable for AM than FBP. For strongly edge-preserving 
penalty functions, this advantage was found to be dependent upon the contrast for which resolution is quantified for 
comparison. The magnitude of the reported dose reduction potential of the AM algorithm was shown to be dependent on 
the resolution metric choices, though the general contrast-dependence was always evident. 

Conclusions: The penalized AM algorithm shows the potential to reconstruct images of comparable quality using a 
fraction of the dose required by FBP. The contrast-dependence on the tradeoff advantage implies that statistical 
algorithms using non-quadratic penalty functions should be assessed using contrasts relevant to the intended clinical 
task. 

Keywords: computed tomography, alternating minimization, non-quadratic regularization, noise, resolution 

 

1. INTRODUCTION  
 Conventional filtered backprojection (FBP) algorithms[1] provide an exact solution to the inverse problem of x-
ray transmission computed tomography (CT) under the assumption that a complete set of noiseless attenuation line 
integral measurements are available. However, real CT data suffers from non-linearities and noise, which cause 
systematic and random fluctuations from the true intensity. Excessive image noise is undesirable as it limits the clinical 
utility of the reconstructed images. Attempts to reduce image noise via filter modification or post-reconstruction image 
smoothing come at the cost of increased edge blurring. The relationship between reducing spatial resolution associated 
with noise reduction techniques constitutes what we will refer to as the noise-resolution tradeoff. 
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 The Expectation-Maximization algorithm of Lange and Carson[2] was formed around the statistical nature of x-
ray CT data and can directly incorporate many nonlinear signal-formation processes into their data models. While it is 
intuitive that algorithms that explicitly model CT-signal statistics should be able to reconstruct images with less noise 
than conventional FBP from the same noisy projection dataset, the image most likely to match the measured data still 
suffers from excessive image noise[3, 4]. A widely used approach to suppress image noise in statistically based 
reconstruction algorithms is to modify the objective function to incorporate some a priori assumptions about the scan 
subject, e.g., a local neighborhood penalty function that enforces the assumption of image smoothness. 

 An algorithm with an improved noise-resolution tradeoff means that it can reconstruct images from the same 
data with either less image noise for similar resolution or better resolution for similar image noise. By extension, an 
algorithm that provides a noise-resolution tradeoff advantage could provide images of comparable noise and resolution 
from data acquired with lower imaging dose, an important topic that has recently gained public attention due to the 
rapidly increasing use of x-ray CT procedures[5]. Reconstruction algorithms that exhibit noise-resolution tradeoff 
advantages are also attractive for quantitative CT applications. The specific problem of estimating photon cross-section 
information from dual-energy measurements has been shown to be extremely sensitive to uncertainty in the measured 
CT values[6] and could reasonably be expected to benefit from statistical reconstruction. 

 In this work, the noise-resolution tradeoff is assessed, in comparison to FBP, for the Alternating Minimization 
(AM) algorithm[7] that includes a non-quadratic penalty function, which is designed to preserve high contrast edge 
boundaries. Previous investigators have assessed the noise-resolution tradeoff to evaluate statistical algorithms using 
parabolic surrogates to model the Poisson log-likelihood[8, 9], adaptive statistical sinogram smoothing techniques[8], 
and iterative reconstruction algorithms for cone-beam CT imaging geometries[10, 11]. In contrast to these previous 
studies that have quantified resolution only for high-contrast structures such as steel bb’s or bone, our study investigates 
the effect that structure contrast has on the noise-resolution tradeoff for the non-quadratic penalized AM algorithm. With 
the goal of isolating the smoothing effects of the two algorithms, an ideal monoenergetic simulation environment is used 
to avoid mean-value artifacts arising from data nonlinearities such as scattered radiation and beam hardening. This forms 
a baseline of noise-resolution tradeoff performance for the penalized Alternating Minimization algorithms, for ideal 
Poisson-counting projection data. We further investigate how the choice of metric for quantifying spatial resolution and 
choice of resolution level at which noise reduction advantage is estimated impact the reported noise-resolution 
advantage. Future work will extend the methods for the quantification of noise and resolution in this paper to images 
reconstructed from real CT data. 

 The methodology of study is described in detail in a previously published paper[12] and are only briefly 
described here.  Our earlier work established, for a particular choice of spatial resolution metric and reference resolution 
level, that penalized AM image reconstruction had the potential to reduce image noise for a fixed dose (or reduce dose 
for a fixed noise level) compared to FBP, and that the apparent noise-resolution advantage exhibited contrast-
dependence for the strongly edge-preserving penalty function. The effect of varying levels of projection noise and the 
spatial non-uniformity of the noise-resolution tradeoff was also investigated. The work herein specifically addresses the 
contrast-dependent variation of resolution within a single reconstructed image as well as the effects of the resolution 
comparison choices on the reported dose reduction potential. 

2. MATERIALS AND METHODS 
2.1 Penalized Alternating Minimization reconstruction 

 The penalized Alternating Minimization algorithm is used to reconstruct images from synthetic sinogram data 
sets derived from a monoenergetic forward projector. The AM algorithm reformulates the classic maximization of the 
Poisson log-likelihood as an alternating minimization of Csiszar’s I-divergence[13], which quantifies the discrepancy 
between the measured data, d, and the expected data means, g. I-divergence is proportional to the negative of the log-
likelihood, meaning that minimization of the I-divergence is equivalent to the maximization of the log-likelihood. For 
full details of the Alternating Minimization algorithm, the reader is referred to O’Sullivan’s 2007 paper[7]. An edge-
preserving log-cosh penalty term is included in the AM algorithm’s objective function to enforce our a priori assumption 
of image smoothness: 

( ) ( || ) ( )I d g Rμ α μ′ ′Φ = + ⋅ , (1) 
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where α controls the relative weight of the penalty function in the optimization. The penalty chosen for this study is 
defined as 

( )( )
( )

1( ) ( ) log cosh ( ) ( )
x x N x

R w x x xμ δ μ μ
δ′∈

⎛ ⎞ ⎡ ⎤′ ′ ′ ′ ′= ⋅ −⎜ ⎟ ⎣ ⎦⎝ ⎠
∑ ∑ . (2) 

The roughness penalty computes a penalty for a pixel x as a function of the pixel intensities in the local neighborhood 
N(x). The neighboring pixels are weighted as 1.0 for the four directly adjacent pixels and 0 for all other pixels. 

 Quadratic penalty functions effectively suppress noise, but tend to blur high-contrast edges, as the penalty 
rapidly increases for large pixel intensity differences. The continuously defined log-cosh function[14] is similar to a 
Huber penalty[15] with quadratic growth for small pixel-to-pixel variations, so as to suppress noise, and linear growth 
for larger intensity variations, so as to preserve edge boundaries. The parameter δ controls the intensity difference at 
which the penalty transitions from quadratic to linear growth. Increasing the value of δ will make the transition to linear 
growth occur at smaller intensity differences. Two different values of δ are investigated as bounds of potential clinically 
relevant penalty parameter value choices. We let AM-100 denote images reconstructed with the penalized AM algorithm 
with δ = 100, which transitions to linear penalty growth for pixel differences approximately 50% of the water 
background and is closer in shape to a quadratic penalty. AM-700 denotes the AM algorithm using a log-cosh penalty 
with δ = 700, which has a growth transition for pixel differences around 10% of background and is closer in shape to a 
linear penalty function. Results for δ values between 100 and 700 would reasonably be expected to lie between the two 
presented parameter values. Figure 1 plots both of the log-cosh penalties investigated in this work and a quadratic 
penalty function for comparison. 

  To evaluate the tradeoff between image noise and resolution, a set of images was reconstructed with varying 
log-cosh penalty weights, α in eq. (1). Here we use the term smoothing strength to refer to both the penalty function 
weight, α, for the AM algorithm and the FWHM of the Gaussian-modified ramp filter in the FBP algorithm described in 
the following section. Both penalty function parameter values of the Alternating Minimization algorithm were run for 
250 iterations with 22 ordered subsets to increase convergence rate[16]. The number of iterations was chosen from 
preliminary simulations that showed the images were well converged. 

2.2 Filtered backprojection reconstruction 

 Weighted filtered backprojection as described in Kak and Slaney[1] is used to backproject the filtered fan beam 
projection data. The filter, H(f), is a modified ramp filter defined in frequency space as 

( ) ( ) ( )H f s f W f G f= ⋅ ⋅ ⋅ . (3) 

Here s is a constant scale factor that ensures the image intensities represent the correct units of linear attenuation, mm-1, 
and f  is the ramp function. The window function ( )W f is rectangular up to frequencies of 90% of Nyquist and then 
rolls off to zero at Nyquist with a raised cosine function. The cosine roll off in the window function was incorporated to 
suppress high frequency ringing artifacts observed in prior simulations at Washington University when using a purely 
rectangular window function. The frequency at which the cosine roll-off kicks in (90% of Nyquist) was chosen as the 
highest frequency that suppressed the ringing artifacts, to retain as much high frequency content as possible. When 
compared side-by-side with reconstructions from the proprietary Siemens FBP, trained observers were unable to 
distinguish which FBP implementation was used for each image. G(f) is the Fourier transform of a Gaussian smoothing 
kernel that further reduces the amplitude of high spatial frequencies. A series of images with varying levels of noise and 
resolution is achieved by varying the full-width at half maximum (FWHM) of the Gaussian smoothing kernel. For 
consistency, the system matrix used for the filtered backprojection reconstruction is the same as that used for the 
penalized AM reconstruction. 
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2.3 Virtual CT system 

 The virtual 3rd generation CT system is composed of 1056 gantry positions equally spaced around a full 360º 
rotation. There are 384 detectors each subtending an arc angle of 4.0625 minutes. Source-to-isocenter distance is 570 
mm and source-to-detector distance is 1005 mm. This gives a virtual detector width of 1.2 mm and projected width at 
isocenter of 0.67 mm. The image space, x, is composed of 512 x 512 square pixels with a length of 0.5 mm on a side, 
providing a field of view of 256 mm. 

 Scatter-free monoenergetic projection data is simulated to avoid systematic deviations, i.e., artifacts, in the 
image reconstruction. The truth phantom is defined as a superposition of analytically defined ellipses. Simulated 
projection data is computed by evaluating the monoenergetic line integral along each source-detector path using 
analytical intersections with the elliptical phantom regions. Simple Poisson noise is added to the analytically calculated 
transmission sinogram data, such that the standard deviation in unblocked detectors is ~ 0.3% of the mean intensity. This 
is on the order of experimentally observed projection noise levels on the Philips Brilliance Big Bore CT simulator using 
a scanning protocol of 120 kVp, 325 mAs and 0.75 mm slice thickness. The noiseless projection data is also 
reconstructed with all algorithms and smoothing strengths for use in quantifying noise and resolution.  

2.4 Phantom 

 The clock phantom used in this work (figure 2) consists of a 20 cm diameter background water cylinder with 8 
cylindrical inserts (2 cm diameter) of varying contrast ranging from ±7% to +238% (bone). The water background is set 
to μ = 0.0205 mm-1, corresponding to the 61 keV energy assumed by our monoenergetic synthetic dataset. Each insert 
center is located 5.5 cm from the image FOV center. The clock phantom allows us to investigate the effect of varying 
contrast magnitudes on the tradeoff of noise and resolution. 

 
(a) 

 
(b) 

 

Figure 1. (a) Comparison of penalty function shape for the two log-cosh penalties investigated in this work and a 
quadratic penalty. Quadratic penalty functions grow too quickly for large pixel differences and consequently over-
blur high-contrast edges. Note that the log-cosh penalties are scaled for plotting purposes and do not correspond to 
the values used in simulation. (b) Simulation clock phantom consists of a 20 cm water cylinder with 2 cm 
diameter inserts of varying contrast to investigate the contrast dependence of the noise-resolution tradeoff. 

2.5  Noise measurement 

 Image noise is assessed in the water region surrounding each contrast insert. For an image reconstructed from a 
noisy projection dataset, the image noise is the standard deviation, as a percent of the background water intensity, for the 
pixels inside the noise region of interest (ROI), or 

% Noise 100 ROI

water

σ
μ

= ⋅ . (4) 

Proc. of SPIE Vol. 7961  79612C-4

Downloaded from SPIE Digital Library on 30 Mar 2011 to 205.245.94.129. Terms of Use:  http://spiedl.org/terms



www.manaraa.com

 

 

The noise ROI for each insert is an annulus that includes image pixels in the water background lying within 4-6 mm 
(inclusive) of the insert boundary, for a total of 756 pixels. A subtraction image between the noiseless and noisy data 
reconstructions is used for the variance measurement to remove systematic bias, such as sampling artifacts, from the 
calculation. 

2.6 Calculation of dose reduction potential  

 An algorithm that can reconstruct an image of comparable resolution with less noise from the same projection 
data offers the clinical advantage of patient dose reduction. We assume that the image noise is proportional to projection 
noise[1, 17] and that projection variance is inversely proportional to the patient dose. From these assumptions, we can 
formulate an answer to the question, “What fraction of the FBP dose does the AM algorithm need to use to reconstruct 
an image with matched noise and resolution?” We calculate the dose fraction as the ratio of AM variance to FBP 
variance at a constant resolution metric value, 

2

2dose fraction AM

FBP

σ
σ

= . (5) 

Intuitively, the ratio of variances, or dose fraction, represents the fraction of dose necessary for the AM algorithm to 
achieve the same image noise and resolution as the FBP algorithm for the chosen contrast insert. The dependence of 
reported dose reduction potential on the choice of reference resolution is investigated by calculating dose fractions at the 
highest and lowest resolution values along the noise-resolution tradeoff curves. 

2.7 Resolution measurement 

 The resolution metric used in this work is based on the Modulation Transfer Function (MTF). While x-ray 
transmission CT is not a shift-invariant linear system, the MTF is considered to be a valid measure of local impulse 
response that can provide insight into the effect of reconstruction on edge blurring. As described in more detail 
elsewhere [12], the edge-spread function (ESF) is differentiated to obtain the line-spread function (LSF) and the Fourier 
transform of the LSF is calculated to obtain the MTF. 

 The circular symmetry of the contrast inserts is used to construct a super-sampled edge-spread function similar 
to Thornton’s use of a sphere[18] to measure the in-plane MTF and slice-sensitivity profile for a multi-slice CT scanner. 
Since our simulation phantom is comprised of a set of circular structures, each reconstructed image pixel’s intensity is 
plotted as a function of the distance between its center and the analytically defined insert edge. In this way, the transition 
between the water background and the contrast insert can be visualized. As multiple pixels have the same distance to the 
edge, the mean intensity at each unique distance is calculated and used for subsequent estimation of the MTF. Sampling 
pixels around a circularly symmetric insert to form a super-sampled edge-spread function reduces the apparent effect of 
resolution anisotropy, noise, and non-uniformity, and thus represents an average of the edge response function within the 
sampled region of interest. The edge-spread function is derived from images reconstructed from the noiseless projection 
dataset to avoid bias from the image noise and to improve the model fitting. As shown in section 3.1 the high contrast 
edges reconstructed with AM-700 were found to be poorly fit by a Gaussian edge model. To further smooth the ESF 
prior to differentiation and Fourier transformation, a 6-parameter Gaussian-exponential model[19] was fit to the super-
sampled edge using the Matlab fminsearch function. 

 To analyze how the image noise and resolution vary as a function of smoothing strength for a particular 
algorithm, it is useful to extract a single parameter to characterize resolution. La Riviere[8], reports the FWHM of a 
Gaussian blurring model fit to line profiles of high-contrast bone inserts, which is an intuitive metric as a wider Gaussian 
represents a blurrier edge. However, our 6-parameter Gaussian-exponential model does not lead to such a straight-
forward metric. 

 We chose to report the area under the MTF curve, called MTF area or xA ,  where x is an arbitrary, spatial 
frequency limit.   

0

1 ( )
x

xA MTF f df
x

= ∫ . (6) 

Proc. of SPIE Vol. 7961  79612C-5

Downloaded from SPIE Digital Library on 30 Mar 2011 to 205.245.94.129. Terms of Use:  http://spiedl.org/terms



www.manaraa.com

 

 

Intuitively, the MTF area represents the fraction of ideal input signal that is recovered for spatial frequencies less than or 
equal to the cutoff frequency. The MTF area xA  is normalized to x, as this is the area under an ideal MTF curve that has 

amplitude 1.0 for all spatial frequencies. We chose x = 0.5 lp/mm to define a single-value surrogate, 0.5A , of edge 
resolution. The 0.5 lp/mm integration limit was chosen as it is near the frequency where the FBP and AM-700 MTF 
shapes differ the most (figure 2d). It is also close to the ACR’s accreditation requirement of 0.6 lp/mm for high-contrast 
resolution. To investigate the variation in noise-resolution tradeoff and reported dose reduction factors, the MTF area 
integrated to the Nyquist frequency of 1.0 lp / mm, 1.0A , is also calculated. 

3. RESULTS 
3.1 Necessity of Gaussian-exponential edge-spread function model 

 Previous investigators have characterized CT image resolution under the assumption of Gaussian blurring, e.g., 
reporting the associated Gaussian FWHM of an error function fit to bone inserts as a surrogate of resolution[8]. Our 
preliminary work revealed that purely Gaussian blurring models did not adequately fit the AM-700 high-contrast edges. 
Figure 2 illustrates (a-c) the different shapes the high-contrast bone insert ESF as reconstructed with the FBP and AM 
algorithms and (d) the subsequently calculated MTFs. The smoothing strengths for comparison in figure 2 were chosen 
as they led to nearly the same image noise (~ 1.09% ± 0.01%) when reconstructing from the noisy dataset. The steep 
central transition and shoulder roll-off of the AM-700 high-contrast edges motivated us to model the edge-spread 
function as a linear combination of Gaussian and exponential components. Though the FBP and low-contrast AM ESFs 
were well fit by the purely Gaussian model, the Gaussian-exponential model was used to fit all reconstructed image 
edge-spread functions to provide a consistent methodology. No loss of ESF fitting quality with the Gaussian-exponential 
model was seen for the edges that were already well fit by the purely Gaussian model. 

 In contrast to the FBP and AM-100 bone MTF’s, which exhibit a rapidly dropping frequency response, the AM-
700 bone MTF shows an initial drop for low frequencies due to the rounded shoulder of the AM-700 ESF, and retention 
of higher spatial frequencies due to the sharp central transition of the ESF. The ESF and MTF shape of the high-contrast 
structures as reconstructed by the AM-700 algorithm were found to be markedly different than those seen in the 
literature[9, 10, 18, 20]. Conventional MTF descriptors, such as the spatial frequency corresponding to 10% MTF and 
50% MTF, did not support robust comparison of AM-700 and FBP resolution, especially for high-contrast structures. 
For example, the 10% MTF for the displayed AM-700 bone insert occurs at a frequency of 2.79 lp / mm, where the FBP 
and AM-100 bone insert frequency responses are essentially zero. 

(a) (b) 
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(c) (d) 
Figure 2. Noise-matched (1.09% ± 0.01%) comparison of bone edge sharpness. The bone ESFs are seen to be well 
fit by both Gaussian and Gaussian-exponential ESF models for the (a) FBP and (b) AM-100 algorithms. The bone 
ESF for (c) AM-700 is seen to be poorly fit by a purely Gaussian model due to the steep central transition and 
shoulder roll-off of the edge. (d) Comparison of the subsequent bone MTF for the three algorithms calculated 
from the Gaussian-exponential fit ESF. 

3.2 Noise-resolution tradeoff curves 

 From each set of images reconstructed with varying smoothing strengths, the noise and resolution have been 
calculated around each of the 8 contrast inserts allowing a noise-resolution tradeoff curve to be plotted for each contrast 
magnitude. Figure 3 displays the noise-resolution (NR) tradeoff curves for the +7% (top row) and -85% (bottom row) 
inserts. The qualitative trends for the other contrast inserts follow those presented for these two inserts. The effect of 
choosing 0.5 lp / mm (left column) for the MTF area integration limit is compared to 1.0 lp / mm (right column). 

 The AM tradeoff curves in figure 3 always lie below the FBP tradeoff curve implying that AM-100 and AM-
700 reconstruct images with either less image noise for the same resolution metric or sharper edges for matched image 
noise. By extension, a tradeoff advantage implies that AM can reconstruct images with similar resolution and image 
noise for less patient dose. Comparing the left and right columns, we see that the cutoff frequency changes the range of 
area fractions of the tradeoff curve, making head-to-head comparison of the resolution metric cutoff choice difficult. 
Qualitatively, it appears that the 1.0 lp / mm cutoff frequency pulls the low contrast curves closer together while pushing 
the high contrast curves further apart, which will affect the reported dose reduction potential as shown in the following 
section. 

 For both choices of MTF area cutoff frequency, the more strongly edge-preserving penalty parameterization, 
AM-700, provides increased noise-resolution tradeoff advantages for higher contrast inserts. Note that because all 
contrast inserts within a single reconstructed image exhibit essentially identical noise levels, the contrast-dependent 
nature of the AM tradeoff curves are due entirely to differences in the resolution. This is a direct result of the edge-
preserving nature of the non-quadratic local neighborhood penalty function. Figure 4 clearly illustrates this by plotting 
(a) the MTF area integrated to 0.5 lp / mm for all contrast inserts within a single reconstructed image from the three 
algorithms. The MTF of selected inserts is also displayed for (b) AM-100 and (c) AM-700 images in figure 4. The FBP 
MTFs are omitted as they are not seen to vary with contrast and are similar in shaped to the AM-100 non-bone MTFs. 
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Figure 3. Noise-resolution tradeoff curves for two contrast inserts (TOP = +7%, BOTTOM = -85%) using two 
choices of MTF area integral cutoff (LEFT = A0.5, RIGHT = A1.0). 

 

 
(a) 
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(b) (c) 

Figure 4. Illustration of the varying resolution within AM images.  (a) Plot of the resolution metric value A0.5 for 
all 8 contrast inserts within a single reconstructed image for the three algorithms. MTFs for selected contrast 
inserts within the (b) AM-100 and (c) AM-700 images are also displayed.  FBP MTFs are omitted as they are not 
seen to be contrast-dependent. It is clear from these graphs that the shifts in the AM noise-resolution tradeoff 
curves are due to contrast-dependent resolution within the image. 

3.3 Dose reduction potential 

 Resolution-matched noise comparisons can be performed only for resolution metric values that are existent on 
all tradeoff curves. We cannot compute the dose fraction for the bone insert since even the highest resolution FBP image 
(with no smoothing) is unable to achieve the 1.0A value of the most strongly smoothed AM-700 image. The dose fraction 
results for the bone insert is thus omitted as the results follow the trend shown for the -85% high-contrast insert. 

 Figure 5 plots the dose fraction (ratio of AM to FBP variance at matched resolution metric value) for the AM-
100 (TOP) and AM-700 (BOTTOM) algorithms. The effect of differing integration limits, 0.5 lp / mm (LEFT) and 1.0 lp 
/ mm (RIGHT), are compared. Note that the maximum and minimum MTF areas available for comparison are different 
when integrating the MTF up to 0.5 and 1.0 lp / mm since the range of values differs for the two cutoff frequencies. Each 
plot contains two curves; based on the largest (red dashed) and smallest (blue dotted) common xA  values. Wider spread 
of the matched high and low resolution dose reduction values for the 0.5 lp / mm cutoff frequency seems to imply that it 
is more sensitive to the choice of resolution comparison point. However, this is not a straightforward comparison, 
considering the lowest and highest common resolution values are not the same between the two integration limits. The 
general trend of improved noise-resolution advantage as the structure contrast increases for the more strongly edge-
preserving AM-700 algorithm is evident in both resolution metric cutoff frequencies. 
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Figure 5. Dose fraction curves for (TOP) AM-100 and (BOTTOM) AM-700. LEFT displays dose fraction curves 
when integrating the MTF up to 0.5 lp / mm.  RIGHT displays dose fractions when integrating the MTF up to 1.0 
lp / mm. Each plot contains two curves for the highest and lowest resolution values available for noise 
comparison.  The reported dose reduction potential of the AM-700 algorithm is seen to strongly depend on the 
magnitude of contrast for which resolution is quantified. 

4. DISCUSSION AND CONCLUSIONS 
 In response to the unique shape of the AM-700 high-contrast edges, we selected the normalized MTF integral 
up to a cutoff frequency as a convenient, but somewhat arbitrary, single-parameter surrogate of edge resolution. The 
MTF area resolution surrogate has not been correlated with any observer performance metrics, making direct 
comparison of our results and existing literature difficult. To the author’s knowledge, no gold standard metric for 
quantifying CT image resolution has been embraced by the community. It seems that future work that correlates an 
objective single-parameter metric of resolution to subjective parameters, such as low contrast detectability or perceived 
sharpness, would be especially useful for edge-preserving penalty functions that result in ESFs and MTFs with very 
different shapes than typically seen [9, 10, 18, 20]. 

 As shown in [12], the log-cosh penalized Alternating Minimization algorithm is found to consistently 
reconstruct resolution-matched images with less noise than conventional FBP, and highlights the result that the noise-
resolution tradeoff for local edge-preserving penalty functions depends strongly on the contrast magnitude for which 
resolution is chosen to be quantified. Specifically, this work shows that the magnitude of the advantage, reported as a 
potential for dose reduction, is subject to choices of resolution metric and reference resolution value that are used for 
comparison. The choice of reference resolution for the calculation of tradeoff advantage is relevant to all smoothing 
techniques, not just edge-preserving penalty functions. Advantage comparisons should be made at reference resolution 
values relevant to the clinical task at hand. The general result of the contrast-dependence for the edge-preserving penalty 
function is evident for all resolution metric choices investigated here.  This implies that noise-resolution tradeoff 
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comparisons for edge-preserving penalty functions should utilize structures with contrasts relevant to the intended 
clinical task. 
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Abstract 30 

Quantitative CT applications require reconstructed image intensity for a given material to 

maintain a one-to-one correspondence to the underlying physical property of interest, 

regardless of location within a subject, subject size, or subject location in the field-of-

view (FOV).  This work utilizes data acquired on a commercial CT scanner of 

homogeneous cylinders of varying composition and diameter at three tube potentials to 35 

compare the performance of conventional filtered backprojection (FBP) reconstruction 

and a novel polyenergetic statistical reconstruction algorithm, Alternating Minimization 

(AM). Scatter-to-primary ratio (SPR) is estimated using a beam-stop technique. The x-

ray spectrum for each tube potential is estimated by fitting a semi-empirical spectrum 

model to measured attenuation curves on central-axis.  Off-axis spectral variations due to 40 

the bowtie filter are modeled using known geometry. Polyenergetic AM is seen to 

reconstruct images with better uniformity and less subject size dependence than FBP.  

Even in a low scatter environment, 3 mm beam collimation and a 1-D anti-scatter grid, a 

simple constant scatter estimate is found to be necessary to achieve AM accuracy of 0.5% 

for objects with SPR > 1%.  Polyenergetic AM appears to be a good candidate for 45 

reducing systematic uncertainties for quantitative CT applications. 

 

PACS: 87.57.-s (Medical Imaging) 

 

Key Words: computed tomography, alternating minimization, filtered backprojection, 50 

polyenergetic statistical reconstruction 
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1. Introduction 
 Quantitative computed tomography (CT) applications such as bone mineral 

density measurement(Boden and Goodenough 1989; Cann 1988), measurement of blood 55 

perfusion(Konig 2003; Valdiviezo and Ambrose 2010), and dual-energy CT methods for 

material characterization(Bazalova and Carrier 2008) or direct estimation of radiological 

cross-section information(Williamson and Li 2006) all rely on accurate relationships 

between measured CT intensities and the underlying tissue property of interest(Wang and 

Yu 2008).  For quantitative CT applications, the measured CT image intensity for a given 60 

material should be independent of subject size, location within the subject and location of 

the subject within the scanner’s field-of-view (FOV).  We refer to these requirements for 

quantitative CT as image intensity consistency criteria. 

 Conventional filtered backprojection (FBP) reconstruction algorithms for x-ray 

CT assume that acquired data are noiseless, linear functions of the attenuation line 65 

integral along each source-detector ray.  However, inherent non-linearities in the CT data 

acquisition process lead to systematic deviations in reconstructed images that undermine 

the consistency criteria for quantitative CT if not properly corrected for.  As the x-ray 

energy spectrum is polyenergetic, low energy photons are preferentially attenuated in the 

scan subject, an effect called beam-hardening (BH), causing the characteristic cupping 70 

artifact(Brooks and Di Chiro 1976; Joseph and Ruth 1997).  It is also well known that 

scattered radiation causes similar systematic cupping artifacts in reconstructed 

images(Endo and Mori 2006; Glover 1982; Joseph and Spital 1982).  Conventional FBP 

reconstructions often rely on empirical data correction schemes to linearize the data prior 

to backprojection, in an attempt to alleviate the effects of BH and scatter.  However, 75 

residual cupping artifacts often remain for objects of larger size or composition that 

deviates considerably from water. 

 Statistical reconstruction algorithms seem well-suited to reducing these systematic 

errors, as they offer the flexibility of incorporating more realistic data acquisition physics 

in the forward model.  Indeed, previous studies have shown that incorporating the 80 

polyenergetic nature of the x-ray spectrum directly into the reconstruction reduces the 

systematic bias of the cupping artifact from BH(Chueh and Tsai 2008; De Man and Nuyts 

2001; Elbakri and Fessler 2002; Elbakri and Fessler 2003; O'Sullivan and Benac 2007; 
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Yan and Whalen 2000).  For example, De Man et al.(De Man and Nuyts 2001) present a 

statistical iterative algorithm that includes a polyenergetic x-ray spectrum estimate in the 85 

data model.  Noiseless, scatter-free simulations were used to quantitatively assess the 

accuracy of the polyenergetic algorithm, and real phantom data acquired on a commercial 

Siemens scanner qualitatively illustrated improved image quality relative to FBP.  Elbakri 

et al.(Elbakri and Fessler 2003) also employed simulation studies to quantify the 

reduction of systematic error from BH for their polyenergetic statistical algorithm.  In 90 

addition, they used real data of a 15 cm diameter water phantom acquired on a table-top 

x-ray CT system to validate the polyenergetic statistical algorithm’s estimation of density 

to within 1.2% for potassium phosphate solutions of varying concentrations.  While 

encouraging, the literature to date on polyenergetic statistical reconstruction seem to only 

assess the criterion that image intensities for a given material be consistent within an 95 

object and quantify absolute accuracy only in simulation studies or in limited 

experimental data cases. 

 In this work, we assess the potential of a novel polyenergetic statistical iterative 

reconstruction algorithm, Alternating Minimization (AM), to reduce systematic errors 

from BH and scatter on data acquired with a commercially available CT scanner.  100 

Polyenergetic AM reconstruction, using measured estimates of scattered radiation and the 

x-ray spectrum (including modeling of the bowtie filter), is compared to FBP 

reconstruction of data processed with the vendor-supplied BH-correction at three tube 

potentials.  Homogeneous cylinders of water, PMMA and Teflon with varying diameters 

are used to assess the image consistency criteria.  A single-basis object model matched to 105 

the cylinder material is used for polyenergetic AM reconstruction, allowing assessment of 

absolute accuracy in relation to an expected ground truth.  To the best of the authors’ 

knowledge, this is the first work to assess the absolute accuracy and a range of 

quantitative consistency criteria for polyenergetic statistical image reconstruction of data 

acquired on a commercial CT scanner. 110 

 

2. Materials and methods 

2.1. The polyenergetic Alternating Minimization reconstruction algorithm 
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 CT image reconstruction was carried out for axial data acquired on the Philips 

Brilliance Big Bore scanner as described in section 2.3 below.  The 2-D image space, x, is 115 

composed of 512 x 512 rectangular image pixels, each with a length of 1.0 mm on a side.  

The CT sinogram data space, y=(,), is defined by the angle of each source-detector ray, 

, and each gantry angle, . 

 The polyenergetic Alternating Minimization (AM) algorithm is briefly presented 

here.  For full details of the AM algorithm and its derivation, the reader is referred to 120 

O’Sullivan’s 2007 paper(O'Sullivan and Benac 2007).  An object is represented in image 

space as a map of linear attenuation coefficients, ( , )x E , that depend on spatial location, 

x, and energy, E. The material at location x is represented as a weighted sum of N basis 

materials: 

1

( , ) ( ) ( )
N

i i
i

E E c 


x x  (1) 125 

where ( )i E  denotes the linear attenuation spectrum of the i-th basis material. 

 The polyenergetic forward model is used to calculate the expected data means 

from the current image estimate,  1( ) ( ), , ( )Nx c x c xc   according to 

0
1

( : ) ( ) ( , ) exp ( | ) ( ) ( )
N

i i
E x X i

g I E h x E c x 
 

       
 

 y c y y y .     (2) 

Here 0 ( , )I Ey  denotes the x-ray particle fluence spectrum incident on the scan subject.  130 

The dependence on y  denotes the ability to model a spectrum that varies for each 

detector element , due to objects such as a bowtie filter, and each gantry angle , for 

example when tube current modulation is employed.  Incorporating the x-ray energy 

spectrum directly in the AM algorithm’s forward model represents an implicit beam-

hardening correction.  Thus, the polyenergetic AM algorithm operates on energy-135 

uncompensated data as discussed in section 2.3.  Accounting for effects such as energy 

integrating detectors in the spectral model is discussed in section 2.5.  An estimate of 

background events, i.e., scattered radiation, is represented by ( ) y , which can also vary 

for each source-detector ray and gantry angle.  The system matrix, ( | )h y x , is the average 

distance traveled by photons crossing pixel x that are incident on the face of detector  for 140 

gantry angle  and is pre-computed to increase the speed of the iterative algorithm. 
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 The AM algorithm reformulates the classic maximization of the Poisson log-

likelihood as an alternating minimization of Csiszar’s I-divergence(Csiszar 1991), an 

information-theoretic measure of discrepancy between two functions, between the 

measured data d and the expected data means g: 145 

( )
( || ) ( ) ln ( ) ( : )

( : )y Y

d y
I d y d y g y

g y c

     
d g c , (3) 

where c  is the current image estimate. The I-divergence is proportional to the negative 

of the Poisson log-likelihood, which means that minimization of the I-divergence is 

equivalent to maximization of the log-likelihood.  The algorithm will reconstruct N 

images that represent the partial density of each basis material in each voxel, ( )ic x .  In 150 

this work, images are reconstructed with a single basis substance (N=1) that was matched 

to the material of the scan subject.  From equation (1), we expect the reconstructed image 

intensity to be c(x) = 1.0 for this case, providing an expected truth for which to assess the 

AM algorithm’s absolute accuracy. 

 A log-cosh penalty term is included in the AM algorithm’s objective function to 155 

enforce the a priori assumption of image smoothness: 

( ) ( || ) ( )I R    c d g c , (4) 

where the Lagrange multiplier, , controls the relative weight of the penalty function.  A 

value of =3-4 is used for all AM reconstructions.  The roughness penalty computes the 

penalty for each pixel x as a function of its neighboring pixel intensities.  The edge-160 

preserving log-cosh penalty function(Elbakri and Fessler 2003; Green 1990) used in this 

work is defined as 

  
( )

1
( ) ( ) log cosh ( ) ( )

x x N x

R w x c x c x


             
 c  ,   (5) 

where N(x) is the set of pixels in the local neighborhood about x. Here the four directly 

adjacent pixels are weighted as ( ) 1w x   and all other pixels as ( ) 0w x  . The parameter 165 

 controls the pixel intensity difference for which the penalty transitions from quadratic 

to linear growth.  The value of  = 15 used in this study corresponds to a transition at 

intensity differences of 10% from background. As the purpose of this work is to assess 

systematic errors, noise was not matched between the AM and FBP images of the same 

data. For a more detailed discussion of the log-cosh penalty function in the AM 170 
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algorithm, the reader is referred to Evans(Evans and Politte 2011; Evans and Politte 

2011). Ordered subsets were utilized to increase the convergence rate(Hudson and Larkin 

1994).  AM images were reconstructed using 512 to 1024 iterations and 33 ordered 

subsets, which was found to ensure that all image cases were well converged. 

 175 

2.2 The filtered backprojection reconstruction algorithm 

Weighted filtered back-projection(Kak and Slaney 1988) was used as a baseline for 

comparison to the penalized Alternating Minimization algorithm.  The filter, H(f), is a 

modified ramp filter defined in frequency space as 

( ) ( )H f s f W f   , (6) 180 

where s is a constant scale factor that ensures the image intensities represent the correct 

units of linear attenuation, mm-1, and f  is the ramp function.  W(f) is a rectangular 

window function up to frequencies of 90% of Nyquist, which then rolls off with a raised 

cosine function to zero at Nyquist frequency.  More information regarding the shape of 

this modified ramp filter can be found in Evans(Evans and Politte 2011).  The FBP 185 

algorithm just described was compared to the Philips proprietary FBP reconstruction 

using the “axial pelvis protocol”. The results reported in the following sections using our 

in-house algorithm were found to be indistinguishable from results when using the 

Philips FBP software.  For consistency, our in-house FBP algorithm used the same 

system matrix as the polyenergetic AM algorithm forward model.  190 

 

2.3. CT data acquisition and processing 

 All of the CT data in this work was acquired on a Philips Brilliance Big Bore 16-

slice scanner.  The Brilliance scanner is a 3rd generation, i.e., rotate-rotate, scanner used 

in VCU’s radiation oncology clinic.  All studies used an axial acquisition protocol, 195 

(identified as “axial pelvis protocol” by the vendor’s software) with detector slice 

thickness of 0.75 mm and beam collimation of 3.0 mm, allowing 4 slices per rotation to 

be acquired.  The raw data, corrected only for dark current, were then exported to a PC 

for processing and reconstruction. 

 Proprietary software provided by Philips enabled us to apply or omit any of the 200 

standard data preprocessing corrections.  Standard system corrections such as detector 
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gain, reference detector normalization, slice normalization and crosstalk were applied to 

all data in this work.  Two sets of processed data were generated from each raw dataset; 

one with the vendor’s proprietary empirical beam hardening (BH) correction turned on 

for conventional FBP reconstruction, and one with the BH correction omitted for 205 

reconstruction with the polyenergetic AM algorithm.  The BH correction is a water-

equivalent polynomial fit. Also of note is that the Brilliance scanner utilizes a 1-D anti-

scatter grid (ASG) for physical scatter rejection and does not apply any scatter correction 

to the data. 

 Four reconstructions of each CT dataset were performed: polyenergetic AM 210 

without a scatter estimate (AMSc-OFF), polyenergetic AM with a constant scatter estimate 

(AMSc-ON), FBP from BH-corrected data (FBPBH-ON) and FBP of BH-uncorrected data 

(FBPBH-OFF).  FBP reconstruction with and without BH corrections applied to the data 

allow the effect of the vendor-supplied empirical BH correction to be studied.  The most 

direct comparison between FBP and AM is for FBPBH-ON and AMSc-OFF as both attempt to 215 

correct for beam-hardening, but not scatter.  The reconstruction of AMSc-ON images 

allows investigation into the effect of a constant scatter correction as described in section 

2.6. 

 

2.4 Physical phantoms and assessment of systematic bias 220 

 Homogeneous cylindrical phantoms of water, polymethyl methacrylate (PMMA) 

and Teflon were used to assess the systematic bias in AM and FBP images.  The water 

cylinder (Victoreen CT performance phantom) consists of 20.3 cm diameter of water 

enclosed by a 6 mm thick acrylic shell. PMMA cylinders of four diameters (5.1 cm, 15.9 

cm, 20.3 cm and 30.5 cm) and Teflon cylinders of three diameters (5.1 cm, 11.4 cm and 225 

17.8 cm) were reconstructed to investigate the effect of subject size.  The largest PMMA 

and Teflon diameters transmit roughly 10-3 of the primary beam to approximate typical 

clinical patient scans.  All cylinders were scanned at tube potentials of 90, 120 and 140 

kVp, and were immobilized to hang off the end of the CT table so that the table was not 

in the FOV. To investigate the dependence of location within the FOV, the cylinders 230 

were scanned both when centered and when shifted approximately 9 cm from the center 

of rotation. 
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 With the goal of assessing systematic bias in the reconstructed images, spatial 

averaging was employed to remove the effect of random image noise.  By exploiting the 

radial symmetry of the scan subjects, image pixels were binned according to their radial 235 

distance to the cylinder centroid D using bin widths of 0.5 cm for the smallest cylinders 

(5.1 cm diameter) and bin widths of 1.0 cm for all other cylinders.  Only pixels with more 

than 4 mm of separation from the cylinder-air interface were included.  The mean image 

intensity in each radial bin (henceforth referred to as the ‘radial bin mean’) as a function 

of the radial bin’s median distance to the cylinder centroid, ( )D , represents the mean 240 

profile and was used in the subsequent assessments of systematic bias.  Figure 1 shows an 

example of the radial averaging method for the 17.8 cm Teflon cylinder reconstructed 

with FBPBH-ON which shows visible cupping. 

 

 
(a) 

 
(b) 

Figure 1.  Illustration of the radial averaging method. (a) The cupping artifact can be visualized in FBPBH-

ON reconstruction of the 17.8 cm Teflon cylinder scanned at 120 kVp with 220 mAs.  (b) However, image 
noise makes it difficult to quantify the cupping artifact from a traditional line profile [location denoted by 
the vertical white line in (a)]. The mean profile, calculated by averaging pixels based on their radial distance 
to the cylinder centroid D, reveals the structure of the cupping artifact and allows assessment of the 
systematic bias. 
 245 

 As stated previously, the AM algorithm was employed with a single-basis image 

model using the material composition of the scan subject.  AM accuracy was assessed by 

calculating the percent difference of all radial bin means from the expected c(x) = 1.0.  

Assessing AM accuracy in reference to an expected ground truth is performed to give 

confidence that the detector-dependent x-ray energy spectrum was properly modeled and 250 
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to investigate the effect of the measured scatter fractions as outlined in the following 

sections. 

 To assess the criterion that intensity be independent of location within the subject, 

the uniformity of image intensities within a homogeneous cylinder was calculated. The 

uniformity index (UI) metric is defined as 255 

 100 peripheral central

central

UI
 



 
 , (7) 

where central  and peripheral  refer to the radial bin means for the pixels that are closest and 

furthest from the cylinder centroid respectively. A positive UI indicates image cupping 

(center < periphery) while a negative UI indicates image capping (center > periphery).  

The UI was calculated for each reconstructed cylinder to compare systematic intensity 260 

deviations within a cylinder for AM and FBP reconstructions. 

 

2.5 Equivalent x-ray energy spectrum estimation 

 While measurement using an energy-selective detector is the most direct method 

to quantify the energy spectrum of a given x-ray beam, it is time consuming and costly as 265 

it requires specialized equipment.  Monte Carlo methods can be used to estimate an x-ray 

spectra, but only if the beam transport and x-ray tube geometry can be fully and 

accurately characterized, along with the electrical potential waveform between the 

cathode and anode.  As an alternative, we adopted Boone’s equivalent spectrum 

method(Boone 1986; Boone 1988) in which a spectrum model is fit to measured 270 

attenuation data.  The equivalent x-ray spectrum is thus an idealized x-ray energy 

distribution that matches the attenuation properties of the actual spectrum.  This work 

utilized the well-established Birch-Marshall (BM) semi-empirical model for a tungsten-

anode x-ray tube(Birch and Marshall 1979), which includes characteristic x-rays.  The 

BM model, ( | , )BM E kVp mmAl , is a function of the known anode angle and two 275 

unknown free parameters, tube potential (kVp) and millimeters of inherent aluminum 

filtration (mmAl).  It has been shown that the BM model using the known tube parameters 

overestimates the high-energy component of the spectrum, though Ay et al. found the 

differences between the BM modelled and measured spectra to be not statistically 

significant(Ay and Sarkar 2005).  The equivalent spectrum method ensures the estimate 280 
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has a proper distribution of high and low energy photons since the BM model parameters 

are fit to the energy-dependence of measured attenuation data. 

 For each tube potential investigated in this work (90, 120 and 140 kVp), 

attenuation was measured on central-axis (CAX) through stacks of aluminum (Al) and 

copper (Cu) of varying total thickness.  Fitting to attenuation curves of two materials with 285 

different energy dependence is shown to better condition the equivalent spectrum 

estimation, since there are two main interaction mechanisms in the diagnostic energy 

range(Sidky and Yu 2005).  Fifteen Al thicknesses from 2.1 mm to 42.9 mm and fifteen 

Cu thicknesses from 1.0 mm to 15.4 mm were used, with the maximum thickness for 

each material chosen to attenuate the beam to roughly 10-3 of the primary intensity.  A 2.1 290 

mm thick Al filter was always placed immediately downstream of the Cu filter stack to 

avoid contaminating the detected signal with the 9 keV characteristic x-rays of Cu. 

 Narrow beam geometry was achieved by use of a collimator assembly as shown 

in figure 2.  The phantom was immobilized such that the collimator opening was aligned 

to the central-axis (CAX) detector position ( 0  ), and was hung off the front of the CT 295 

table to avoid table attenuation and scatter.  The collimator opening is ¼” wide allowing 

for roughly 5 to 6 central axis detectors to be irradiated.  The scanner was operated in 

scout view mode, meaning the gantry was parked at the 6 o’clock position (  =180) and 

the table was translated through the beam (z-direction) to collect multiple readings 

through each filter stack.  At least 100 detector readings from the center of the collimator 300 

opening were averaged from the projection data to reduce statistical variation in each 

measurement.  All data acquired for estimation of the x-ray spectrum were processed 

without the vendor-supplied BH correction.  The ratio of detector signals I through the 

collimator assembly with and without a filter stack in place form the experimental 

measurement of attenuation, where t indexes the 30 measurements through both Al and 305 

Cu of varying total thickness: 

exp

( )
( )

(0)

I t
T t

I
  (8). 
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Figure 2:  The attenuation measurement collimator assembly used for equivalent spectrum fitting.  
Stacks of high purity Al and Cu filters are placed in the phantom.  The lead collimators are ¼” thick to 
block scattered radiation.  The collimator opening is ¼” wide allowing approximately 5 to 6 detectors to 
be irradiated per view, and ¾” long in the z-direction allowing approximately 400 views to be acquired 
as the table translates in surview mode. 

 

   The expected transmission for a BM model spectrum ( | , )BM E kVp mmAl , 310 

through a stack of filters t with total thickness lt is calculated by: 

 

 
  

model

det det

( | , ) ( ) ( ) exp ( )
( , , )

( | , ) ( ) ( )

( ) exp ( ) ( 0)

( ) 1 exp ( )

BM t t
E

BM
E

BT BT

E E kVp mmAl BT E Detect E E l
T kVp mmAl t

E E kVp mmAl BT E Detect E

BT E E l

Detect E E l



 



     


  

   

   




(9). 

Attenuation coefficients ( )t E  for the Al and Cu filters were calculated from 

NIST(Hubbell and Seltzer 1995) mass-attenuation coefficients, using certificates of 

analysis from the vendor to account for impurities in the metals, and measured the 315 

physical densities.  The thickness of each individual filter lt was also measured.  The BM 

spectrum model and linear attenuation coefficients were all calculated on 1 keV energy 

steps.  The BM model returns the particle-fluence spectrum of the x-ray beam, incident 

on the detector array.  As the CT detectors are energy-integrating, multiplying by E 

converts to energy fluence.  The term ( )Detect E  represents a first-order correction for 320 

the quantum efficiency of the detector crystal of thickness detl . ( )BT E  represents the 

attenuation of the spectrum by the known central-axis bowtie filter (BT) thickness 

( 0)BTl   .  The equivalent spectrum thus represents the photon-counting spectrum just 
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upstream of the BT filter. The use of the CT detector array for transmission 

measurements, versus use of an independent ionization chamber, forms a closed 325 

measurement-model loop to account for errors in our simple detector-response model and 

the actual signal-formation process. 

 The equivalent spectrum is defined here as minimizing the sum of squared 

relative differences between the measured and modeled transmission values: 

 eq eq

2

model expeq
0

, exp

( , , ) ( )
( 0, )

( )min
tkVp mmAl

T kVp mmAl t T t
E

T t


  
         
  (10). 330 

The equivalent spectrum parameters kVpeq and mmAleq were found by performing a 2-D 

exhaustive search over a grid of BM parameter values; kVp and mmAl.  Grid spacing 

was set such that kVp = 1 keV and mmAl = 0.1 mm. 

   For detectors away from central-axis, i.e. 0  , both the mean photon energy 

and the total incident energy fluence will be significantly modulated by the Brilliance’s 335 

bowtie filter.  Accounting for the detector-dependent energy distribution of the x-ray 

beam is essential for the polyenergetic AM algorithm to generate artifact-free image 

reconstructions. Inadequate modeling of the varying x-ray energy distribution across the 

detector array will cause systematic artifacts relative to the imaging axis for AM 

reconstruction.  From an engineering diagram of the bowtie filter, the pathlength for each 340 

source-detector ray through the bowtie filter, ( )BTl  , was calculated. The spectrum was 

further hardened by modeling the equivalent inherent filtration as an aluminum slab of 

thickness eqmmAl   and applying a 1/ cos  correction for oblique filtration.  In terms of 

the central-axis equivalent spectrum 0 ( 0, )eq E  , the equivalent detector-dependent 

spectrum 0 ( , )eq E  is given by: 345 

0 0 eq

1
( , ) ( 0, ) exp ( ) ( ) ( ) 1

cos
eq eq

BT BT AlE E E l E mmAl    


  
            

  
    (11). 

 As the AM algorithm’s forward model (2) does not explicitly incorporate detector 

modeling, the first-order detector model from (9) is applied to the equivalent detector-

dependent spectrum before being provided to the AM algorithm as input data: 

0 0( , ) ( , ) ( )eqI E E E Detect E  y  (12). 350 
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The off-axis hardening model (11) was validated by comparing the relative fluence 

profile 0 ( , )
E

I E y  to the normalized measured in-air profiles 

( , : 0) / ( , 0 : 0)d c d c      . 

 

2.6. Scatter estimation using a beam-stop method 355 

 While the 1-D anti-scatter grid (ASG) on the Brilliance CT scanner can be 

expected to effectively reject large angle scatter, a non-trivial component of the scatter 

signal is due to small angle coherent scattering(Engel and Baumer 2008), which will 

bypass the ASG foils and contaminate the detected signal. The residual scatter signal was 

experimentally measured with a beam-stop technique in the spirit of Johns and 360 

Yaffe(Johns and Yaffe 1982). The scattered signal intensity was estimated from four 

measurements (M1,…,M4) for the CAX source-detector ray ( 0  ) for each cylindrical 

phantom at all three tube potentials.  As a first-order correction, the signal intensity from 

scattered radiation was assumed to be constant for all detectors  and all gantry angles . 

 Borrowing from Endo’s(Endo and Mori 2006) notation, the detected signal 365 

measured behind the scan subject M1 is composed of three components: 

1 'M P P S   , (13) 

where P is the signal from primary radiation originating from the focal spot, P’ is the 

signal from off-focal radiation due to photon scattering upstream of the patient, e.g. in the 

BT filter, and S is the signal due to radiation scattered by the scan subject.  A second 370 

measurement M2 was taken with a ¼” thick lead block having finite width w inserted on 

CAX, which effectively blocks the signal from primary radiation ( 0P  ): 

     2 ( ) ( )B BM w P P w S S w     . (14) 

As the off-focal signal P  does not originate from the focal spot, it passes around the 

beam-stopper and is still present in 2M .  Here ( )BP w  and ( )BS w  represent the reduction 375 

in off-focal and scatter components due to shadowing of the finite lead block of width w.  

To correct for block shadowing, 2 ( )M w  was measured for 3 block widths (w = 6, 10, and 

15 mm) and the signal for a block of zero width,  2 0M w P S   , was estimated as 

the intercept of a linear fit to the 3 blocker measurements.  The effect of block shadowing 
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and this method of removal are well illustrated in Endo 2006(Endo and Mori 2006).  The 380 

detected signal from primary radiation passing through the scan subject was then 

estimated as  1 2 0P M M w   . 

 The off-focal signal intensity is present in the absence of a scan subject, and is 

therefore considered as effective primary radiation.  Neglecting to estimate and remove 

the off-focal component of signal intensity leads to an overestimation of the subject-385 

scatter component.  Estimation of the off-focal signal component was achieved by air 

measurements, i.e. with no scan subject present. Measurement of unblocked air signal 

will contain both primary and off-focal components: 

3 air airM P P   (15) 

The in-air off-focal signal component airP  was estimated by in air measurement M4 that 390 

uses the lead beam-stopper to block primary intensity ( 0airP  ): 

   4 ( )air BM w P P w    (16) 

The block shadowing was again removed by repeating  4M w  for the three lead block 

widths and extrapolating to w=0 to give the in-air off-focal signal 

component  4 0 airM w P  . 395 

 Since the radiation reaching the detector with the 1-D ASG in place is largely 

small angle scatter with little energy loss(Engel and Baumer 2008), the off-focal 

component is assumed to travel the same pathlength through the scan subject as the 

primary component.  The ratio of the primary signal with and without the scan subject 

( / airP P ) was used to estimate the off-focal signal component attenuated by the scan 400 

subject: 

 /air airP P P P    (17) 

With the estimate of off-focal signal component passing through the scan subject P’, the 

component of detected intensity due to scatter from the scan subject, S, was calculated 

from (13). To perform the beam-stop scatter measurements just described, the scanner 405 

was operated in scout view mode, meaning the source was parked at a constant location 

as the table is translated in the z-direction.  The lead beam-stoppers each have a length in 
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z of 21 mm, allowing at least 100 detector readings centered behind the beam-stopper to 

be averaged to reduce statistical variability.  

3. Results 410 

3.1. Equivalent x-ray spectrum estimation 

 The CAX equivalent spectra 0 ( 0, )eq E   derived from measured Al and Cu 

attenuation curves for the three investigated tube potentials are illustrated in figure 3. 

Table 1 summarizes equivalent BM spectrum model parameters which fit measured 

attenuation data to within 1.34% root mean square error.  It is seen that the equivalent 415 

kVp of the BM model is within 1 keV of the nominal accelerating potential, and the 

equivalent millimeters of inherent aluminum filtration span a range of 0.3 mm across the 

three cases.  In support of the off-axis spectral hardening model, the computed in-air 

energy fluence profiles of all three potentials match well with the measured air profiles as 

illustrated in figure 4 for the 120 kVp case. 420 

 

Figure 3.  Equivalent Birch-Marshall x-ray spectra for three nominal tube potentials investigated in this 
work.  All three spectra were normalized to have unit area for this plot.
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Table 1. Equivalent Birch-Marshall spectrum parameters fit to 
attenuation measurements through Al and Cu filters on central axis 
(CAX).  The root-mean-square and maximum errors between modeled 
and measured transmissions are reported as a percent of the measured 
values. 
Nominal kVp  

(keV) 
kVpeq  
(keV) 

mmAleq  
(mm) 

RMSE 
(%) 

Max residual 
error (%) 

90 90 12.5 1.34 3.81 
120 121 12.3 1.07 1.54 
140 141 12.6 1.20 2.03 

 425 

Figure 4.  Example of excellent agreement between the measured and modeled in-air profiles for the 
120 kVp nominal tube potential. 

 

 

3.2. Measured scatter on central axis 

 Table 2 reports the measured scatter-to-primary ratios (SPR) reported as 

percentages for the cylindrical phantoms investigated in this work.  Only the largest 430 

PMMA and Teflon cylinders, with diameters of 30.5 cm and 17.8 cm respectively, were 

estimated to have a SPR greater than 1%.  From the beam-stop measurements made in 

air, the off-focal radiation, P’, was estimated to constitute 1.7% to 2.2% of the total signal 

for 90 kVp to 140 kVp respectively, which is in agreement with the literature(Johns and 

Yaffe 1982).  If not accounted for in the beam-stopper measurements, the off-focal 435 

radiation leads to the SPR being overestimated by an additive 1.7% to 2.2% for all object 

sizes.  For example, the smallest 5.1 cm PMMA disk at 120 kVp would have an 

estimated SPR of 2.25% if ignoring the off-focal radiation compared to 0.17% when 

accounting for the off-focal component. 

440 
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Table 2.  Measured scatter-to-primary ratios (%) for the 8 cylinders investigated in this 
work.  With 3 mm beam collimation and the 1D-ASG, only the largest Teflon and 
PMMA cylinders have SPR > 1%. 

Material Water PMMA Teflon 

Diameter (cm) 20.3 5.1 15.9 20.3 30.5 5.1 11.4 17.8 

90 kVp 0.20 0.13 0.44 0.68 2.91 0.09 0.49 1.36 

120 kVp 0.59 0.17 0.34 1.00 3.00 0.21 0.80 1.93 

140 kVp 0.39 0.18 0.48 0.63 3.63 0.27 0.59 2.72 
 

 

3.3. Reconstructed image results – centered cylinders 

 Recall that radial averaging (section 2.4) was employed to assess the systematic 445 

intensity variations within reconstructed images of the homogeneous cylindrical 

phantoms.  Figure 5 compares the mean profiles for the 8 cylindrical phantoms cylinders 

reconstructed with (from top to bottom) FBP of data without BH correction [FBPBH-OFF], 

FBP of BH-corrected data [FBPBH-ON], polyenergetic AM with no scatter estimate [AMSc-

OFF], and polyenergetic AM including a constant scatter estimate [AMSc-ON].  The left 450 

column displays mean profiles for the four PMMA cylinders and the right column 

displays mean profiles for the water cylinder and the three Teflon cylinders.  All data 

presented in this section are for the cylinders centered in the FOV; the off-centered 

reconstruction results are presented in the following section. All data in figure 5 were 

acquired at 120 kVp tube potential; the 90 kVp and 140 kVp results for the cylinders 455 

centered in the FOV show the same trends. 

 The polyenergetic AM mean profiles in figure 5 are absolute values of c(x) using 

the single-basis object model (equation (1)) matched to the scan subject material.  As the 

expected AM truth intensity is 1.0, absolute accuracy and relative % variations are easily 

visualized.  The mean FBP profiles in figure 5 are normalized independently for each 460 

material.  All PMMA bin means are normalized to the centermost bin mean of the 20.3 

cm cylinder, all Teflon bin means to the centermost bin mean of the 11.4 cm cylinder, 

and all bin means for the 20.3 cm water cylinder are normalized to the centermost bin 

mean.  Normalizing the mean FBP profiles for each material in figure 5 allows relative % 

variations of mean intensities for a given material to be more easily visualized. 465 
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 The shape of the cupping artifact is easily discerned in the mean profiles of figure 

5.  The uniformity index (UI) was calculated to summarize the variation of image 

intensity within each homogeneous cylinder.  Grouping all 24 image cases, i.e., all 

materials, all cylinder diameters and all tube potentials, figure 6 plots the cumulative 

distribution function of the UI values for each of the four reconstruction methods.  470 

Although the vendor’s pre-reconstruction BH-correction improves FBP uniformity 

relative to uncorrected data, the polyenergetic AM algorithm performs better.  The 

advantage of the polyenergetic AM algorithm is most substantial for the largest cylinders, 

since the x-ray spectrum has experienced more hardening.  Taking the largest Teflon 

cylinder (17.8 cm) at 120 kVp for example, the UI for AMSc-OFF is 0.5% compared to 475 

1.9% for FBPBH-ON.  It should be noted that the largest UI values for the AM curves in 

figure 6 are due to error trends, which are discussed further below, while the largest FBP 

UI values are from cupping in the largest Teflon cylinders. 

 The mean profiles of FBPBH-OFF and FBPBH-ON in figure 5, not only show that the 

vendor-supplied BH correction reduces the systematic variations within a homogeneous 480 

object, but also reduces variations between objects of the same material and differing 

size. Comparing the overall mean intensity within each reconstructed cylinder (i.e., the 

average of all radial bin means), FBPBH-ON reconstructs all four PMMA cylinders to 

within 0.75% of each other.  However, the mean intensity of the three Teflon cylinders 

using FBPBH-ON varies up to 2.5%.  In comparison, polyenergetic AMSc-OFF reconstructs 485 

both the PMMA and Teflon cylinders with overall mean intensities that vary less than 

0.5% across all cylinder diameters. 

 The percent error of each polyenergetic AM radial bin mean is calculated in 

relation to the expected truth intensity of 1.0.  The overall accuracy of the polyenergetic 

AM reconstructions is summarized in figure 7, which plots the cumulative distribution of 490 

radial bin mean errors for all centered cylinder experiments.  The radial bins for all 

materials, object sizes, and tube potentials are grouped together.  AM reconstruction 

using a constant scatter estimate from the beam-stop measurements is shown to bring 

most (90%) of the radial bins to within 0.45% of truth compared to AMSc-OFF with 90% of 

radial bins within 0.84% of truth.  The reduction in bias afforded by scatter correction is 495 
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greatest for larger disks where SPR was greater than 1%.  This effect is easily visualized 

in the AMSc-OFF and AMSc-ON mean profiles of figure 5. 

 The largest errors seen in the CDF tails of figure 7 are a result of the same error 

trends mentioned previously that give the largest UI values for AM reconstruction.  The 

first trend is an underestimation of intensity in the periphery of the 5.1 cm diameter 500 

Teflon and PMMA cylinders observed at all tube potentials. The mean profiles in figure 5 

show that the magnitude of this “peripheral roll-off” for the 5.1 cm cylinders is 

approximately 1% and is present in both AM and FBP reconstructions.  Figure 8 

illustrates the peripheral roll-off in 120 kVp images of the 5.1 cm PMMA cylinder.  The 

second error trend is an apparent underestimation for the centermost radial bins of the 505 

largest 30.5 cm diameter PMMA cylinder, again observed in images at all three tube 

potentials.  The 120 kVp mean profiles of the 30.5 cm PMMA cylinder in figure 5 exhibit 

a relatively sharp drop in mean intensity of approximately 0.5% over the centermost two 

radial bins for both AM and FBP reconstructions. 

 510 
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Figure. 5:  Mean radial profiles for centered cylinders scanned at 120 kVp.  Results for 90 kVp and 140 kVp 
are similar and are thus omitted.  LEFT column displays the four PMMA cylinders and RIGHT column 
displays the water cylinder and three Teflon cylinders.  The FBP profiles (TOP two rows) have been 
normalized to the centermost radial bin mean of the medium sized cylinders for all 3 materials, independently 
to display the relative variation of mean intensity for each material.  The AM mean profiles (BOTTOM two 
rows) are absolute reconstructed intensities to display the error relative to expected ground truth intensity of 
1.0. Note the varying y-axis scales. 
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Figure 6.  Cumulative distribution functions of the Uniformity Index for all reconstructed 
cylinders (8 cylinders at 3 tube potentials) sorted by reconstruction algorithm.  Comparing the 
FBP reconstruction with and without BH corrections applied to the data (triangles and 
diamonds respectively) shows the improvement in image flatness by a current clinically used 
BH correction.  It is seen that the implicit BH correction of the polyenergetic AM algorithm 
(circles) outperforms the FBP algorithm and that a scatter correction (squares) further enhances 
freedom from systematic cupping artifacts. 
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 515 

 
Figure 7.  Cumulative distribution functions comparing the % error from expected truth of all 
polyenergetic AM radial bin means reconstructed with and without a constant scatter correction.  
Radial bin means from all cylinders and all tube potentials are grouped together into each CDF.  It 
is seen that AM reconstruction with a constant scatter estimate from the central-axis beam-stopper 
measurements brings 90% of all radial bin means to within 0.45% of truth.  Comparatively, AM 
without a constant scatter estimate reconstructs 90% of all radial bin means to within 0.84% of 
truth. 

 

 
a) 

 
b) 

Figure 8. 120 kVp images of the 5.1 cm PMMA disk scanned in air reconstructed with (a) AMSc-ON and 
(b) FBPBH-ON illustrate the presence of the peripheral roll-off error trend seen in the mean profiles of the 
smallest 5.1 cm diameter PMMA and Teflon cylinders.  A narrow window of  2% around the 
centermost radial bin mean is used for each image to display the 1% roll-off trend. 

 

3.4. Off-centered cylinder results 

 Shifting the cylinders away from the imaging axis center allows assessment of the 

quantitative CT consistency criterion that image intensities for a given material be 520 

independent of subject location in the FOV.  Figure 9 displays 140 kVp AMSc-ON and 

FBPBH-ON reconstructions of the 15.9 cm PMMA cylinder shifted 9 cm away from the 

FOV center.  It is seen that the intensities on the proximal edge, relative to the FOV 
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center, are systematically underestimated.  This error trend was observed in the off-

centered cylinders for all materials, object sizes, tube potentials, and reconstruction 525 

algorithms.  The magnitude of the proximal edge depression varied between 

approximately 0.5% and 1.5% for the varying cylinder sizes.  Excluding the peripheral 

radial bin, the off-centered results of image intensity consistency and AM absolute 

accuracy are nearly identical to the centered cylinder results presented above.  Including a 

constant scatter estimate in the polyenergetic AM reconstruction of the off-centered cases 530 

decreased the systematic error in the same manner as seen for the centered cases. 

However, the magnitude of the proximal edge depression was unaffected by use of a 

constant scatter estimate. 
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 535 

a) b) 

 
c) 

Figure 9. 140 kVp images of the 15.9 cm PMMA cylinder shifted ~ 9 cm down in 
the FOV reconstructed with AMSc-ON and (b) FBPBH-ON illustrate the proximal edge 
depression.  Images are displayed with a narrow window of  3% around the 
centermost radial bin mean.  (c) Vertical line profiles through the images [location 
shown by dashed line in (b)] normalized to the centermost radial bin mean.  The 
proximal edge depression is observed in all off-centered cylinder reconstructions, 
i.e. all algorithms, all materials, all object sizes, and all tube potentials. 

 

 

4. Discussion 

 The results presented here show that the implicit beam-hardening correction of 

the polyenergetic AM algorithm reconstructs images that better meet a range of 540 

consistency criteria for quantitative CT applications than FBP reconstruction using a 

commercially available BH data correction.  AM images show improved freedom from 

systematic cupping artifacts as evidenced by comparing uniformity within the 
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homogeneous cylinders.  For the criterion of object-size independence, AM was found to 

reconstruct both PMMA and Teflon cylinders of various diameters to within 0.5% overall 545 

mean intensity, while FBP showed variation of up to 3% for the Teflon cylinders. 

 Including an estimate of scatter in the polyenergetic AM reconstruction was seen 

to further improve the relative uniformity of intensities within the cylinders and was 

found necessary to bring absolute AM accuracy to within 0.5%.  Even for a 3rd generation 

geometry CT scanner with a highly collimated beam (3.0 mm width in the z-direction) 550 

and a 1-D ASG, scatter signal of greater than 1% were observed and were sufficiently 

large to sacrifice quantitative accuracy.  For some quantitative applications, e.g., dual-

energy estimation of photon cross sections, the loss of quantitative accuracy associated 

with neglecting scatter corrections would result in cross-section measurement errors 

exceeding 3%(Williamson and Li 2006).  Increased slice thickness of multi-555 

detector(Ohnesorge and Flohr 1999) and cone-beam geometries(Siewerdsen and Jaffray 

2001) allow acceptance of greater amounts of scatter, making scatter correction for 

quantitative applications increasingly important in these scenarios. 

 Excluding the radial bin furthest from the cylinder centroid, the absolute AM 

accuracy and relative consistency results of the off-centered cases is nearly identical to 560 

those of the centered cases.  However, all off-centered cylinder reconstructions were seen 

to suffer from a systematic underestimation on the proximal edge on the order of 0.5% to 

1.5%.  When shifting the cylinder away from the FOV center, the scatter can no longer be 

assumed to be symmetric across the detector array or constant for each gantry angle.  We 

hypothesize that this proximal edge depression can be alleviated by incorporating 565 

detector and gantry angle dependent scatter estimates in image reconstruction.  Future 

work is planned to assess this hypothesis by estimating detector and gantry angle 

dependent scatter profiles using an in-house transmission CT Monte Carlo code(Lazos 

and Williamson 2010) modified for the geometry of our 3rd generation commercial 

scanner. 570 

 Despite overall improved performance of the polyenergetic AM algorithm over 

conventional FBP, both reconstruction algorithms were seen to suffer from two error 

trends.  The largest 30.5 cm PMMA cylinder shows an apparent depression of central 

mean values of about 0.5%.  Both of the smallest 5.1 cm PMMA and Teflon cylinders 
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show a roll-off of peripheral mean intensities.  Figure 10 displays AM and FBP 575 

reconstructed images of the 20.3 cm water cylinder with varying plastic inserts of 2.5 cm 

diameter.  The 2.5 cm plastic cylinders in the water bath do not exhibit the peripheral 

roll-off of intensity seen for the 5.1 cm cylinders scanned in air.  As both reconstruction 

algorithms exhibit the same error trends, it is not thought to be an inherent limitation of 

the AM algorithm.  The causes of these error trends are currently unexplained and 580 

warrant future investigation. 

 

 
(a) 

 
(b) 

Figure 10. 120 kVp images of the 20.3 cm water cylinder with 2.5 cm plastic inserts of 
various compositions including PMMA, acrylic and polystyrene.  None of the 2.5 cm 
plastic inserts in the water bath reconstructed with either (a) AMSc-ON or (b) FBPBH-ON 
exhibit the peripheral roll-off error trend observed for the 5.1 cm cylinders scanned in 
air.  Images are displayed with a window of  30% of the mean water intensity. 

 

 Also of note is the presence of an edge-overshoot artifact at the air-phantom 

interface in the AM images, visible in figures 8a and 9a.  The literature(Snyder and 585 

Miller 1987; Zbijewski and Beekman 2004) has shown these artifacts are in fact inherent 

to likelihood estimation methods and arise from sampling mismatches between the 

forward projection of a discrete object model and the measured projection data of a 

continuous physical object.  Zbijewski(Zbijewski and Beekman 2004) shows that 

statistical reconstruction on a finer voxel grid effectively alleviates the edge-overshoot 590 

artifact as the inconsistency between discrete forward projections and measured data is 

reduced, but at the expense of longer computing times.  For the fully statistical AM 

algorithm, Keesing et al.(Keesing and O'Sullivan 2006; Keesing and O'Sullivan 2007) 

have demonstrated the feasibility of speeding up the computation time by parallelizing 

the projection operations for a fully 3D helical geometry.  Advances in computer 595 
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hardware and parallelization schemes are certainly an important area of research for 

bringing physically motivated statistical reconstruction algorithms into clinical use. 

 The use of a single-basis object model matched to the cylinder material was 

utilized in this work to provide a ground truth for which to quantitatively assess the 

accuracy of the AM intensities reconstructed from experimentally acquired data.  600 

However, it should be noted that reconstructed AM intensities will have a different 

interpretation when using a single-basis object model, equation (1), that is not matched to 

the scan subject material.  When object model and subject material differ we expect from 

the polyenergetic forward model of equation (2) that the AM algorithm will reconstruct 

an image intensity that represents the spectrum-weighted ratio of subject and object-605 

model linear attenuation coefficients.  This is similar to the interpretation of FBP 

intensities as attenuation coefficients at the spectrally-averaged effective energy.  

Preliminary investigations have found support for this interpretation of mis-matched 

single-basis AM intensities, and future work intends to investigate the effect of this on 

polyenergetic AM image quality. 610 

 Assessing the reconstructed intensities relative to a ground truth allowed us to 

ensure that the x-ray spectrum distributions and scatter estimations were measured as 

accurately as possible.  As shown in the results of Elbakri et al’s(Elbakri and Fessler 

2003) simulation study on polyenergetic statistical reconstruction, spectral mismatch 

directly leads to errors in the quantitative accuracy of reconstructed intensities.  The 615 

presented accuracy of reconstructed AM intensities for a range of materials, cylinder 

diameters and locations within the FOV gives us confidence in the scatter and spectral 

estimates, especially in the model employed for off-axis spectral hardening due to the 

bowtie filter, supporting future work with data acquired on our Brilliance CT scanner. 

5. Conclusions 620 

 The implicit beam-hardening correction of the polyenergetic AM algorithm is 

shown to reconstruct images that better meet consistency criteria for quantitative CT, i.e., 

that image intensities for a given material should be independent of subject size, location 

within a subject, and subject location within the FOV for data acquired on a commercial 

CT scanner at three tube potentials.  Experimental methods to estimate scatter, the 625 
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equivalent x-ray spectrum, and to model off-axis spectral hardening from the bowtie filter 

are presented and are seen to be capable of supporting reconstructed AM image 

intensities to within 0.5% of expected.  Two error trends were found to sacrifice AM 

accuracy in a limited number of cases.  They were observed in both AM and FBP images 

and warrant further investigation.  It is demonstrated that even in low scatter 630 

environments, i.e., narrow beam collimation and a 1-D ASG, a simple constant scatter 

correction is necessary to reconstruct mean image intensities with an accuracy of 0.5% in 

support of quantitative CT applications. 
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Abstract 

Accurate patient-specific photon cross-section information is needed to support dose 

calculation for low energy photon modalities in medicine such as brachytherapy and 

kilovoltage x-ray imaging procedures.  A post-processing dual-energy CT (pDECT) 

imaging technique for non-invasive in vivo photon cross-section estimation has been 35 

experimentally implemented on a commercial CT scanner.  Materials of known 

composition and density were used to compare pDECT attenuation coefficient 

measurements to reference values over the 10 keV to 1 MeV energy range.  Because 

statistical image reconstruction (SIR) has been shown to reconstruct images with less 

random and systematic error than conventional filtered backprojection (FBP), the pDECT 40 

technique was implemented with both an in-house polyenergetic SIR algorithm as well as 

a FBP reconstruction algorithm.  Improvement from increased spectral separation was 

also investigated by additional filtration of the high-energy beam.  When averaging a 

large number of pixels in-plane to reduce statistical uncertainty (reconstructed voxel size 

= 1x1x3 mm3), the linear attenuation coefficient is estimated to within 1% of reference 45 

for energies of 30 keV to 1 MeV, with errors rising to 3% to 6% at 10 keV.  The SIR 

algorithm is shown to estimate photon cross-sections with less random uncertainty than 

FBP owing to improved noise performance.  However, the post-processing DECT 

method is shown to be highly sensitive to uncertainty in reconstructed images. 

 50 

 

Key Words: computed tomography, dual-energy, alternating minimization, filtered 

backprojection, cross-section estimation 
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1. Introduction 55 

 Accurate in vivo mapping of photon cross-section information is needed to 

improve the dose-calculation accuracy of low energy photon-emitting radiation 

modalities such as brachytherapy, mammography, and x-ray computed tomography (CT).  

Large dose calculation errors can occur in these modalities if tissue composition and 

heterogeneities are ignored.  For photon energies below 50 keV, estimated doses are 60 

exquisitely sensitive to tissue composition, as energy deposition is dominated by 

photoelectric absorption, which is strongly dependent on the material’s atomic number.  

For example, neglecting tissue composition heterogeneities in low energy Pd-103 and I-

125 permanent seed implants of the breast and prostate leads to errors in dose-volume 

histogram (DVH) metrics used for prescription and plan assessment ranging from 8% to 65 

40% (Afsharpour and Pignol 2010; Carrier and D'Amours 2007; Chibani and Williamson 

2005; Landry and Reniers 2010).  Even higher energy brachytherapy sources, such as Ir-

192 and Yb-169, have been shown to suffer dose calculation errors on the order of 5% to 

30% when neglecting tissue composition and geometry (Lymperopoulou and Papagiannis 

2006; Pantelis and Papagiannis 2005). 70 

 Single-energy CT (SECT) methods have been shown to support sufficiently 

accurate tissue heterogeneity corrections for megavoltage (MV) beam dose calculations 

(du Plessis and Willemse 1998; Schneider and Bortfeld 2000).  However, for low 

kilovoltage (kV) modalities SECT methods have been found to introduce cross-section 

measurement errors in excess of 20%(Watanabe 1999), due to cross-section dependence 75 

on two independent parameters.  Using recommended bulk tissue compositions(ICRP 

2003) is not a satisfactory substitute for in vivo measurement as these recommendations 

are derived from a handful of measurements that exhibit large sample-to-sample 

variability(White and Widdowson 1991; Woodard and White 1986).  In addition, large 

patient-to-patient variations in bulk tissue composition have been observed in some sites, 80 

for example the relative amount of glandular tissues in the breast has been shown to vary 

from 16% to 68% (Geise and Palchevsky 1996; Yaffe and Boone 2009).  A method to 

non-invasively measure patient-specific, low-energy photon cross-section information 

would thus be of great value for improving dose-calculation accuracy for low energy 
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brachytherapy radiation therapy modalities and kV imaging procedures as well as 85 

improving the accuracy of quantitative CT applications. 

 CT scans at multiple energies can be used to de-couple the dependence of photon 

attenuation on two or more independent material parameters.  Much effort has been 

focused on the use of dual-energy CT (DECT) information for material characterization, 

often in terms of electron density and effective atomic number(Heismann and Leppert 90 

2003; Rutherford and Pullan 1976; Torikoshi and Tsunoo 2003).  Electron density (e) 

and effective atomic number (Zeff) have been shown to be estimated with errors ranging 

up to approximately 5% and 12%, respectively, from experimentally acquired DECT data 

of known test materials(Bazalova and Carrier 2008; Goodsitt and Christodoulou 2011).  

Bazalova et al. further reported dose calculated using the DECT estimated Zeff and e 95 

values to be within 1% of dose calculated with exactly assigned material parameters for 

18 MV, 6MV and 250 kVp photon beams(Bazalova and Carrier 2008).  However, the 

effect of the Zeff and e errors on dose for the low energy regime of brachytherapy seeds 

(10 – 30 keV) where the PE mechanism dominates is unclear. 

 The accuracy with which multi-energy CT can be used to directly estimate 100 

radiological cross-section values as input to more accurate model-based dose calculation 

algorithms has not been extensively studied.  Midgley developed a non-separable four-

parameter model capable of fitting low energy cross-sections to within 1.5% for energies 

greater than 30 keV in an idealized simulation(Midgley 2004). He further demonstrated 

cross-section estimation accuracy on the order of 1.5% (for energies between 32 keV and 105 

66 keV) in an experimental study using near-monochromatic characteristic x-ray beam 

scanning(Midgley 2005).  However, clinical implementation of this approach may not be 

feasible, as it requires scans at four energies using an x-ray source that cannot be easily 

extrapolated to clinical practice.  In a simulation study, Williamson et al. demonstrated 

that a simple two-parameter basis-vector model could fit low energy cross-sections from 110 

ideal DECT images with 1% accuracy(Williamson and Li 2006).  Though, their error 

analysis illustrated that the cross-section estimates are extremely sensitive to uncertainties 

in reconstructed CT image intensities.  Similarly, Goodsitt et al. recently reported on 

difficulties obtaining accurate low energy cross-section estimates (in the form of 

synthesized monochromatic images) for known tissue-equivalent phantom materials from 115 
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data acquired on a commercially available DECT scanner(Goodsitt and Christodoulou 

2011). 

 Statistical iterative reconstruction (SIR) algorithms, as they are founded on the 

inherently statistical nature of the data, have been shown to reconstruct images with less 

noise, for matched resolution, than conventional FBP reconstruction (Evans and Politte 120 

2011; Ziegler and Kohler 2007).  SIR algorithms can also incorporate more accurate 

models of the CT signal formation process, which has been shown to mitigate systematic 

artifacts such as cupping(De Man and Nuyts 2001; Elbakri and Fessler 2003; O'Sullivan 

and Benac 2007) and streaking(Williamson and Whiting 2002).  By reducing random and 

systematic uncertainties of CT image intensity relative to FBP, we hypothesize that SIR 125 

can further improve the accuracy of pDECT photon cross-section measurements. 

 In this work, we evaluate the accuracy of linear attenuation coefficient estimates 

in the 10 keV to 1 MeV energy range derived from experimentally acquired DECT data 

reconstructed with conventional FBP and a polyenergetic SIR algorithm, Alternating 

Minimization (AM)(O'Sullivan and Benac 2007).  Aqueous solutions and industrial 130 

plastics of known composition simulating a range of biological tissues are used to 

compare DE-estimated linear attenuation coefficients to NIST reference coefficients in 

idealized phantom geometries scanned on a Philips Brilliance Big Bore CT scanner.  

Increased DE spectral separation is also investigated for potential performance 

improvement via additional filtration of the high kVp beam.  To the best of the authors’ 135 

knowledge, this is the first work to systematically assess the cross-section accuracy 

achievable by a post-processing DECT method using data acquired on a commercially 

available CT scanner. 

  

2. Materials and methods 140 

2.1. Test substances and phantom geometries 

 The three basis materials and eight test substances used in Williamson et al.’s 

theoretical study of post-processing DECT photon cross-section measurement were 

physically realized in this work as reported in Table 1.  The solutions of precise percent-

by-mass composition were fabricated by mixing high purity dehydrated salts, or ethanol 145 
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(ETOH), with high purity water, using a calibrated analytical balance with estimated 

uncertainty of 0.1 mg.  An elemental analysis (Elemental Analysis Inc., Lexington, KY) 

was performed on the solid plastic rods to account for high and medium Z impurities, 

which if neglected, were found to induce mass-attenuation coefficient differences of up to 

1.5% in the low energy range.  The mass density of each material was estimated to within 150 

0.5% uncertainty by measuring the mass of a known volume, determined by machining 

samples of known dimensions for the solid samples and measured using a Fisherbrand 

Finnipette II in the case of the solutions.  The compositions, measured impurities and 

mass densities are used to derive the total linear attenuation coefficient benchmark, 

( )NIST E , as a function of photon energy for each material in table 1, using the NIST 155 

XCOM program (NIST Standard Reference Database 8)(Hubbell and Seltzer 1995).  In 

this work, the word cross-section is also used to describe the attenuation coefficient of a 

material as the two quantities are related by the material-specific density constant.  The 

meaning of the basis pair reported in table 1 is described later in section 2.3. 

160 
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Table 1. Basis materials and test substances investigated in this work.  Note the composition percentages 
denote fraction by mass.  “Basis pair” refers to the two materials used to represent a test substance, as 
described in sections 2.2 and 2.3 

Substance Composition State  (g/cm3) Basis pair (,) 
Basis Materials 

Water H2O Liquid 1.000 - 
Polystyrene [C8H8]n Solid 1.044 - 
23% CaCl2 23% CaCl2, 77% H2O Liquid 1.214 - 

Test Substances 
18% CaCl2 18% CaCl2, 82% H2O Liquid 1.166 (Water, 23% CaCl2) 
7% CaCl2 7% CaCl2, 93% H2O Liquid 1.066 (Water, 23% CaCl2) 

29% NaClO3 29% NaClO3, 71% H2O Liquid 1.237 (Water, 23% CaCl2) 
Teflon [C2F4]n Solid 2.155 (Water, 23% CaCl2) 
ETOH 100% C2H5OH Liquid 0.787 (Water, Polystyrene) 

50% ETOH 50% C2H5OH, 50% H2O Liquid 0.909 (Water, Polystyrene) 
Methyl-ethyl 

ketone (MEK) 
CH3CH2COCH3 Liquid 0.804 (Water, Polystyrene) 

PMMA (Lucite) [C5H8O2]n Solid 1.186 (Water, Polystyrene) 

 

 All solutions were contained in 30 mL polyethylene Nalgene bottles with outer 

diameters of 34 mm with the exception of Methyl-ethyl ketone (MEK), which due to its 

corrosiveness, was stored in a 31 mm diameter, 30 mL vial with 1 mm thick Teflon walls.  165 

The solid rods had a diameter of 26 mm.  The solutions and solid rods were immobilized 

in the center of a cylindrical water phantom using an out-of-field acrylic plate.  The water 

cylinder (Victoreen CT performance phantom) consists of a 20.3 cm diameter water 

cylinder enclosed by a 6 mm thick acrylic shell for a total diameter of 21.5 cm (figure 1).  

The 21.5 cm water cylinder is referred to as the head phantom geometry.  To test 170 

accuracy within a phantom more representative of a pelvic patient, a 26 cm x 35 cm 

elliptical acrylic shell was placed around the water cylinder.  This setup is referred to as 

the body phantom geometry.  Images of the head and body phantoms with a pure ethanol 

(ETOH) sample positioned at their centers are displayed in figure 1. 

 175 
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(a) 

 
(b) 

Figure 1. FBP images of the (a) head phantom and (b) the body phantom, with ETOH samples at their 
centers Scan parameters are 90 kVp and 220 mAs, with 3 mm beam collimation.  Images are windowed to 
[-40% : +20%] of the mean water intensity. 
 

2.2. The two-parameter basis vector model and dual-energy CT 

 Two-parameter models are the core of DECT methods, as they relate CT image 

intensity to the underlying material properties to be estimated.  Williamson et 

al.(Williamson and Li 2006) found that the two parameter basis-vector model, in which 180 

photon cross sections of an arbitrary material are approximated as a weighted mixture of 

two dissimilar reference materials (basis substances), more accurately represents low-

energy cross sections than the more widely used parametric fit model, which represents 

cross-sections as simple functions of effective atomic number (Zeff), energy, and electron 

density (e) (Rutherford and Pullan 1976). 185 

 The basis vector model (BVM)(Lehmann and Alvarez 1981) utilized here 

assumes that the linear attenuation coefficient of an unknown material in voxel x can be 

accurately represented as a linear combination of two basis substances  and : 

( , ) ( ) ( ) ( ) ( )x E w x E w x E         , (1) 

where ( )w x and ( )w x  are the weighting coefficients for each basis substance.  190 

Assuming that reconstructed CT image intensities are proportional to the linear 

attenuation coefficient of the substance occupying the location x, at the effective scanning 

energies E1 and E2, the BVM results in a pair of linear equations with two unknowns, 

( ), ( )w x w x  : 

1 1 1

2 2 2

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

x E w x E w x E

x E w x E w x E

   

   

  

  

 

 
, (2) 195 
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which can be solved on a voxel-by-voxel basis, yielding a basis-vector image 

 ( ), ( )w w x x . 

 This post-processing dual-energy CT (pDECT) technique does not require explicit 

knowledge of E1 and E2 as the basis material expansion vectors 

 1 2 1 2( ), ( ), ( ), ( )E E E E        are obtained from calibration images acquired using the 200 

same scanning technique as the test substances.  Given that the composition and density 

of the basis materials are known, the basis coefficient images ( )w x  and ( )w x  derived 

from the DECT image pair can be used to estimate the entire photon cross-section curve 

as a function of energy for the substance at location x from equation (1).  Williamson et 

al. show that the basis weights can be further used to calculate other radiological 205 

quantities, such as partial cross-sections, mass-energy absorption coefficients, and 

differential cross-sections(Williamson and Li 2006) required by radiation transport codes.  

In this work, the focus is on the accuracy with which the BVM model can estimate the 

total linear attenuation coefficient of the test substances. 

 210 

2.3. Dual-energy data acquisition 

 All dual-energy CT data were acquired on the Philips Brilliance 16 detector-row 

Big Bore CT scanner (Philips Medical Systems, Cleveland, OH) used in VCU’s radiation 

oncology clinic, utilizing clinically available protocols and tube potentials.  Axial scan 

protocols were used (denoted in the vendor’s software as Axial Pelvis) for scanning both 215 

head and body phantom geometries.  The data from the central 4 rows of detectors, each 

0.75 mm wide in the  z-direction, were averaged together to give an axial slice thickness 

of 3 mm.  This is the narrowest beam collimation available and was chosen to minimize 

the amount of scattered radiation.  Maximum allowable tube currents for the chosen scan 

protocols of 220 mAs and 175 mAs were used to acquire dual-energy data at tube 220 

potentials of 90 kVp and 140 kVp, respectively.  These acquisition parameters lead to 

CTDIvol dose values in a pelvis phantom (as reported on the scanner) of 8.7 mGy (90 

kVp) and 22.7 mGy (140 kVp).  For calibrating the basis substances in the body phantom 

geometry, repeat scans were acquired and the data averaged to simulate higher dose 
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scans.  This was to avoid systematic streaking artifacts that are known to arise from 225 

photon starvation (Hsieh 1998) in the larger body phantom.  However, all of the test 

substances in the body phantom, unless otherwise noted in the results section, were 

acquired with the standard protocol described above. 

 The raw data, corrected only for dark current, were exported from the scanner for 

processing and reconstruction.  Proprietary software provided by Philips enabled any of 230 

the standard data preprocessing corrections to be applied or omitted.  System corrections 

such as detector gain, reference detector normalization, slice normalization and crosstalk 

were applied to all data in this work.  The Brilliance scanner uses a 1-D anti-scatter grid 

(ASG) for physical scatter rejection, and does not apply any additional scatter correction 

to the data.  Two sets of processed data were generated from each raw dataset; one with 235 

the vendor’s proprietary water-equivalent beam hardening (BH) correction turned on for 

conventional FBP reconstruction, and one with the BH correction omitted for 

reconstruction with the polyenergetic AM algorithm. 

 Previous literature has shown that additional filtration of the high kVp beam 

improved the dual-energy material discrimination problem (separating iodine and 240 

bone)(Primak and Ramirez Giraldo 2009) by increasing the separation of the high and 

low energy scanning spectra.  To test the potential of this strategy to improve pDECT 

cross-section imaging, a high purity tin filter of 0.5 mm thickness was machined to be 

retrofitted to the Brilliance CT’s collimator system.  Figure 2 shows how the additional 

tin filtration increases the spectral separation between the low and high energy scans.  245 

The accuracy of cross-section estimation is compared using DE image pairs acquired 

with the standard 90 kVp and 140 kVp beams (90+140 Std) and DE image pairs acquired 

with the standard 90 kVp beam and the tin filtered 140 kVp beam (90+140 Tin).  

However, it should be noted that the 0.5 mm tin filter reduces the 140 kVp beam particle 

fluence incident on the scan subject to approximately 25% of its standard intensity, 250 

meaning the tin filtered 140 kVp data is acquired with less dose and will have more 

quantum noise. 
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Figure 2. X-ray spectra (normalized to unit area) for DE imaging.  It is seen that additional tin filtration of 
the 140 kVp beam increases the spectral separation with the standard 90 kVp beam. Spectra were estimated 
by fitting a Birch-Marshall model to measured attenuation data as described in section 2.4. 
 

 The calibration basis material image intensities  1 2 1 2( ), ( ), ( ), ( )E E E E        255 

required for pDECT analysis were averaged within 7 mm or 9 mm diameter circular 

regions-of-interest (ROIs) centered on each plastic rod or solution respectively.  Basis 

material calibration measurements were obtained within both the head and body phantom 

geometries, using the data processing and reconstruction as for the test substance scans.  

Hence, basis and test material intensities were measured under identical conditions except 260 

for differences between sample composition and density.  In this near ideal situation, the 

impact of residual artifacts arising from non-linearities such as beam-hardening and 

scatter within the test substance datasets will be minimized. 

 Regarding choice of basis materials, previous work (Williamson and Li) found 

that BVM modeling accuracy was improved by using two pairs of bases.  Materials with 265 

Zeff lower than water were modeled by a basis pair of water and polystyrene while higher 

Z materials (Zeff > water) were represented as linear combinations of water and a 23% 

CaCl2 aqueous solution.  Each image pixel x is classified as low-Z or high-Z, and 

assigned the corresponding basis pair, by comparing the relative CT image intensities at 

low and high-energy: 270 

       

       

1 2

1 2 2

;  , = Water,  polystyrene

;  , = Water,  23% CaCl

x x

water water

x x

water water

E E

E E

   
 

   
 

   
   

   

          

.    (3) 
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 In practice, image noise can lead to pixel misclassification, i.e., assignment of a 

pixel to the sub-optimal basis pair.  To avoid potential bias in comparing one 

reconstruction algorithm to another due to varying magnitudes of image noise, the pixels 

that are known to lie within the test substance are assigned the ideal basis pair as denoted 275 

in Table 1. 

 

2.4 Dual-energy attenuation coefficient accuracy endpoints 

 Once the basis pair is assigned for each pixel, the basis material weighting 

coefficients,  ( ), ( )w w x x , are then calculated for each pixel x, using the reconstructed 280 

DE image intensities,  1 2( , ), ( , )E E x x , and the averaged basis material intensities 

calibrated in the appropriate phantom geometry and at the appropriate scan energies, 

 1 2 1 2( ), ( ), ( ), ( )E E E E       . 

 From the basis coefficient images, the linear attenuation coefficient can be 

estimated at any energy E from equation (1) for every pixel location x.  For pixels within 285 

the test sample footprint, pDECT accuracy was quantified by the ratio of the measured to 

NIST reference attenuation coefficient as a function of energy in the 10 – 1000 keV 

range.  The distribution of pixel-specific cross-section ratios within each ROI was used to 

quantify statistical uncertainty of pDECT measurements.  The mean pDECT bias was 

quantified as the attenuation coefficient ratio averaged over the sample ROI pixels, 290 

( )
( )

DE ROI

NIST

E
E





 
 
 

x . 

 The sensitivity of the estimated linear attenuation coefficients to input image 

uncertainty was investigated using the law of propagation of uncertainty(Taylor and 

Kuyatt 1994).  As described in more detail in Williamson et al.’s 2006 paper(Williamson 

and Li 2006), the estimated uncertainty in the six reconstructed image intensities (four 295 

calibration values and two values at each voxel x) required by equations (1) and (2) are 

used to compute the uncertainty of the DE estimated attenuation coefficient, ( , )DE x E . 

 



www.manaraa.com

13 

2.5. Polyenergetic Alternating Minimization image reconstruction 

 The sinogram data exported from the scanner is denoted by d(y) where the data 300 

space, y=(,), is defined by the angle of each source-detector pair ray, , and each gantry 

angle, .  The 2-D image space is composed of a 512 x 512 rectangular array of 1 mm 

square pixels with 1.0 mm length on a side where x denotes the indices of each pixel.  For 

the Alternating Minimization (AM) algorithm, an object is represented in image space as 

a map of linear attenuation coefficients that depend on spatial location x and energy E. 305 

The object is represented as a weighted sum of N basis materials: 

1

( , ) ( ) ( )
N

i i
i

E E c 


x x , (4) 

where ( )i E  denotes the linear attenuation spectrum of the ith basis material.  The AM 

algorithm will estimate N images that represent the partial density of each basis material 

in each voxel; ( )ic x . In this work, we reconstruct images with a single basis substance 310 

(N=1) of water.  Given this restriction, AM models the sinogram data, by computing the 

expected data means g from an image estimate c’ according to the forward model 

0( : ) ( ) ( , ) exp ( | ) ( ) ( )water
E x X

g c I E h E c 


        
 

 y y y y x x .     (5) 

The system matrix, ( | )h y x , is the average distance traveled by photons crossing pixel x 

that are incident on the face of detector  for gantry angle  and is pre-computed to 315 

increase the speed of the iterative algorithm.  An estimate of scattered radiation, ( ) y , 

can be included in the forward model, though none is included in the main data cases 

presented here since using the same phantom geometry for test substances and basis 

material calibrations is expected mitigate the effect of scatter.  0 ( , )I Ey  denotes the x-ray  

particle fluence spectrum incident on the scan subject. Incorporating the x-ray spectrum 320 

directly in the AM algorithm’s forward model represents an implicit beam-hardening 

correction.  The polyenergetic AM algorithm thus operates on energy-uncompensated 

data; that is data with all system pre-processing corrections performed excluding the 

vendor’s BH correction. 

 The AM algorithm’s objective function is based on Csisazar’s I-325 

divergence(Csiszar 1991),  ||I d g , a scalar-valued information-theoretic measure of the 
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discrepancy between two functions, in this case the noisy measured data d(y) and the 

expected noiseless data means g(y), equation (5).  The I-divergence is proportional to the 

negative of the Poisson log-likelihood, which means that the image which minimizes the 

I-divergence also maximizes the log-likelihood of observing the data d(y).  The 330 

reformulation of the optimization problem in terms of the I-divergence and a novel 

application of the convex decomposition lemma allow for a closed form image update 

step.  The reader is referred to O’Sullivan et al. 2007(O'Sullivan and Benac 2007) for a 

more complete treatment of the AM algorithm. 

 The penalized objective function includes a penalty term to enforce the a priori 335 

assumption of image smoothness: 

( ) ( || ) ( )I d g R    c c , (6) 

where c’ is the current image estimate and  controls the relative weighting of the penalty 

function.  A value of =5.0x10-4 is used for all AM reconstructions in this work and was 

chosen from preliminary reconstructions that were found to well balance noise and 340 

resolution.  The roughness penalty R(c’) computes a penalty for all pixels x as a function 

of the neighboring pixel intensities x’.  The edge-preserving log-cosh penalty 

function(Elbakri and Fessler 2003; Green 1990) used in this work is defined as 

  
( )

1
( ) ( ) log cosh ( ) ( )

N

R w c c


             
 

x x x

c x x x ,    (7) 

where N(x) is the set of neighboring pixels weighted as ( ) 1w  x for the four directly 345 

adjacent pixels and as ( ) 0w  x for all other pixels. The parameter  controls the penalty 

transition from quadratic to linear growth.  Here  = 15 is used, which corresponds to a 

transition at intensity differences of 10% from background.  For a more detailed 

treatment of the parameters  and  in the log-cosh penalized AM algorithm, the reader is 

referred to Evans 2011 (Evans and Politte 2011).  Ordered subsets are utilized to increase 350 

the convergence rate (Hudson and Larkin 1994).  All AM images are reconstructed using 

1024 iterations and 33 ordered subsets, which was found to ensure the images were well 

converged. 

 The x-ray spectrum, 0 ( , )I Ey , required by the AM forward projection model was 

obtained by fitting the semi-empirical Birch-Marshall spectrum model, including 355 
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tungsten characteristic x-rays, to narrow-beam attenuation curves through high purity 

aluminum and copper filters of varying thickness for the central-axis ( = 0) source-

detector ray.  The resultant equivalent spectrum model (shown in figure 2) fit the 

measured attenuation data to within 1.5% RMS error for all tube potentials investigated 

in this work, including the tin filtered 140 kVp beam.  The off-axis hardening of the 360 

spectrum due to the bowtie filter was modeled by computationally hardening the central 

axis equivalent spectrum with the known thickness and material of the filter.  More 

details are given elsewhere (Evans and Whiting 2011), including a demonstration that 

AM was able to reconstruct homogeneous phantom image intensities with 0.5% 

accuracy. 365 

 

2.6. Filtered backprojection image reconstruction 

 An in-house weighted filtered back-projection algorithm (Kak and Slaney 1988) 

was used for two reasons: to ensure that FBP and AM used the same system matrix 

( | )h y x  for, and to allow management of the FBP reconstruction kernel.  Preliminary 370 

studies comparing in-house FBP reconstructions with the Philips clinical software and 

our in-house algorithm have revealed no discernible differences.  The sinogram data were 

pre-processed with all Philips corrections, including the beam-hardening (BH) correction.  

Since no vendor-supported BH correction was available for the 140 kVp beam with the 

additional 0.5 mm of tin filtration, pDECT was not performed using FBP reconstruction 375 

of 90+140 Tin sinogram pairs.  The in-house FBP filter, H(f), is a modified ramp filter 

defined in frequency space as 

( ) ( ) ( )H f s f W f G f    , (8) 

where s is a constant scale factor that ensures the image intensities represent units of 

linear attenuation, mm-1, and f  is the ramp function.  W(f) is a rectangular window 380 

function up to frequencies of 90% of Nyquist which then rolls off with a raised cosine 

function to zero at Nyquist frequency.  More detailed information regarding this modified 

ramp filter can be found in Evans (Evans and Politte 2011). G(f) is the Fourier transform 

of a Gaussian smoothing kernel, which allows control of reconstructed image noise and 

resolution by further reducing the amplitude of high spatial frequencies.  As a first-order 385 
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attempt to match the resolution of AM and FBP images, the FWHM of the Gaussian 

smoothing kernels, 1.0 mm and 2.0 mm for head and body phantoms respectively, were 

selected so that FBP  and AM images exhibited similar edge-response functions at the 

PMMA rod boundary (Evans and Politte 2011). 

 390 

3. Results 

 Post-processing DECT is illustrated in figure 3 for the 50% ETOH solution in the 

head phantom scanned with the 90+140 Std energy pair.  For the 50% ETOH solution, 

the ideal pair of basis materials is (,) = (water, polystyrene).  From the basis 

coefficient images, it can be seen that the 50% ETOH is modeled as being predominantly 395 

composed of polystyrene.  In the water background the  basis coefficient (always water) 

dominates as expected.  The total linear attenuation coefficient at any energy can be 

estimated using the basis coefficient images and equation (1).  Here, simulated mono-

energetic images calculated at 28 keV and 100 keV are presented.  It is seen that the 

contrast between the polystyrene test substance and the water background is increased in 400 

the 28 keV image, however the image noise is greater due to larger attenuation 

coefficient estimation uncertainty at lower energies as shown later. 
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FBP (90+140 Std) AM (90+140 Std) 

    

 

 
Figure 3.  Illustration of the pDECT method for 50% ETOH centered in the head phantom reconstructed with 
FBP (Left) and AM (Right).  Top Row: Reconstructed images of 90 kVp and 140 kVp sinogram data.  In 
conjunction with the corresponding basis material calibration images, the DE images are used to calculate the 
basis material weighting coefficient images (Middle row).  From the basis coefficient images, monoenergetic 
images can be calculated at any energy. Bottom row: Displayed here are mono-energetic linear attenuation 
images computed at 28 keV and 100 keV.  Note that all images are windowed to [-50% : +20%] of the mean 

water intensity, except the ,w w   images, which are windowed to weights of [-0.1 : +1.1]. 

 405 

 The ratio of total linear attenuation coefficients estimated by pDECT to NIST 

reference values is used to assess pDECT accuracy.  The mean ratio of the pixels within 

each test substance ROI, ( )
( )

DE ROI

NIST

E
E





 
 
 

x , is plotted as a function of energy in 

figure 4.  In both the head and body phantom geometries, FBP and polyenergetic AM 

estimate total linear attenuation with a mean error (or bias) of 0.5% to 1.0% for energies 410 

above 30 keV to 40 keV.  However, for lower energies, mean error exceeds 1% rising to 

2% to 3% at 10 keV for most materials and 3% - 6% for Teflon. 
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 For the MEK in the body phantom a higher effective scanning dose was required 

to achieve the displayed level of mean accuracy for the MEK in the body phantom.  The 

higher effective scanning dose was achieved by averaging seven repeat acquisitions for a 415 

slice of data 12 mm wide in z.  All other test substances were acquired with the standard 

dose and 3 mm slices as described in section 2.3.  Data with inadequate signal statistics, 

i.e., acquired without enough dose, can suffer from systematic streaking artifacts due to 

photon starvation(Hsieh 1998).  Using the standard scanning protocol, mean MEK linear 

attenuation coefficient estimates deviated by as much as 60% from NIST reference at 10 420 

keV. 

 At first glance, increasing the spectral separation by using the 90+140 Tin 

spectral pair does not appear to improve the pDECT-AM accuracy, and is in fact slightly 

worse for certain materials.  However, it is tough to draw conclusions at this point as the 

scanning dose is not matched between the 140 Std and 140 Tin protocols.  As noted in 425 

section 2.3, the 0.5 mm tin filter reduces the total photon fluence incident on the scan 

subject to about 25% of its unfiltered intensity.  Mean bias for the 90+140 Tin protocol 

may also be expected to decrease as effective scanning dose increases, as was the case for 

the MEK in the body phantom. 

 430 
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Figure 4.  Ratio of mean pDECT estimated cross-sections (averaged over all pixels within the material ROI) to 
NIST reference values for all test substances.  Columns denote test substances centered in the (Left) head 
phantom and (Right) body phantom geometries.  Rows compare accuracy 90+140 Std DE images using (Top) 
FBP and (Middle) AM reconstruction and (Bottom) AM reconstruction using the 90+140 Tin image pair with 
increased spectral separation.  All data was acquired with the standard scanning doses and 3 mm slice 
thicknesses, except for the three basis materials and the MEK test substance in the body phantom (Right).  For 
these materials in the body phantom a higher effective dose was achieved by averaging seven repeat acquisition 
for a 12 mm slice thickness. 
 

 While the mean pDECT attenuation coefficient estimation accuracy for each 

material is important, the accuracy will vary from pixel-to-pixel due to image noise.  435 

Figure 5 displays the distribution of ( , ) ( )DE NISTE E x  ratios for pixels within the 

PMMA rod ROI at 28 keV for the various pDECT scenarios.  The mean of the 

distribution corresponds to the mean bias at 28 keV, as displayed in figure 4.  The 

standard deviation of the distribution provides a measure of how widely the pDECT 

attenuation coefficient estimate varies for pixels within the test substance ROI.  Figure 5 440 

shows that while both AM and FBP images give a mean bias of less than 1.4% for 

PMMA at 28 keV in the head phantom, the pDECT estimates have a wider spread using 

FBP reconstruction ( = 12.2%) than when using AM reconstruction (=7.5%).  The 

situation is seen to be similar in the body phantom case. 

445 
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Figure 5.  Distribution of bias for pixels within the PMMA ROI at 28 keV.  Images were all acquired 
with the standard scanning protocol and reconstructed with 1x1x3 mm3 voxel dimensions.  Left column 
is for the head phantom and right column is for the body phantom.  Rows compare the cross-section 
bias distribution for 90+140 Std DE images using (Top) FBP and (Middle) AM reconstruction and 
(Bottom) AM reconstruction using the 90+140 Tin image pair with increased spectral separation.  For 
each distribution of ratios, the mean and standard deviation is reported. 
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 The width of the bias distribution for each test substance illustrates the impact of 

image noise on pDECT performance.  To summarize the results, table 2 reports the mean 450 

and standard deviation of the attenuation coefficient errors for all pixels within each test 

substance for all pDECT scenarios.  200 keV is taken as representative of energies 

between 100 keV and 1 MeV, where mean bias of less than 1% is consistently achieved 

and 28 keV is representative of low-energy applications, where mean attenuation 

coefficient estimation errors often exceed 1%.  Comparing values at 28 keV and 200 keV 455 

shows us that both the mean bias (systematic uncertainty) and the standard deviation of 

the bias (random uncertainty) of estimated attenuation coefficients are larger at low 

energies. 
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 460 

Table 2.  Mean percent error of pDECT attenuation coefficients relative to NIST reference values 
within the test substance ROIs at 28 keV and 200 keV.  Values in parentheses denote the 
corresponding standard deviation of the pDECT error over all pixels within the test substance 
ROIs.  Scanning doses and reconstructed pixel dimensions are the same as described in figure 4. 

Test Substance 
Energy 
(keV) 

Phantom FBP (90+140) AM (90+140) AM (90+140 Tin)

18% CaCl2 

28 
Head 0.5% (4.7%) 0.6% (2.6%) 0.6% (2.3%) 

Body 0.9% (8.5%) 0.5% (3.9%) -0.6% (2.6%) 

200 
Head -0.2% (1.5%) -0.2% (0.8%) -0.2% (1.0%) 

Body -0.5% (2.4%) -0.4% (1.2%) 0.1% (1.0%) 

7% CaCl2 

28 
Head 1.2% (7.4%) 1.1% (4.2%) 0.6% (4.2%) 

Body 0.6% (9.7%) 0.7% (3.7%) -0.3% (4.3%) 

200 
Head -0.5% (1.6%) -0.4% (0.9%) -0.3% (1.1%) 

Body -0.3% (1.6%) -0.4% (0.6%) -0.1% (1.1%) 

29% NaClO3 

28 
Head -0.5% (6.0%) -0.2% (3.1%) 0.4% (3.8%) 

Body -1.0% (10.2%) -1.1% (4.0%) -2.4% (4.3%) 

200 
Head -0.4% (1.4%) -0.4% (0.7%) -0.7% (1.4%) 

Body -0.5% (2.0%) -0.4% (0.8%) 0.0% (1.3%) 

Teflon 

28 
Head -1.7% (6.3%) -0.6% (2.8%) -1.0% (2.7%) 

Body -1.2% (8.8%) -0.6% (2.4%) -2.3% (3.2%) 

200 
Head 0.0% (1.1%) 0.2% (0.5%) 0.3% (0.7%) 

Body -0.2% (1.2%) 0.1% (0.4%) 0.5% (0.7%) 

ETOH 

28 
Head 0.0% (17.3%) -0.6% (10.8%) -0.9% (10.7%)

Body 1.1% (25.3%) 1.0% (12.4%) 0.5% (8.8%) 

200 
Head 0.0% (1.8%) 0.0% (1.1%) 0.0% (1.5%) 

Body 0.1% (2.2%) -0.2% (1.2%) -0.1% (1.3%) 

50% ETOH 

28 
Head -0.5% (13.1%) -0.7% (8.0%) -0.5% (8.8%) 

Body 0.9% (22.7%) 1.3% (9.6%) -2.2% (5.9%) 

200 
Head 0.4% (1.5%) 0.4% (0.9%) 0.4% (1.5%) 

Body 0.3% (2.6%) 0.1% (1.1%) 0.7% (0.9%) 

MEK 

28 
Head -0.8% (20.1%) -0.8% (12.7%) 1.1% (9.4%) 

Body -0.8% (12.7%) 0.6% (16.6%) -1.9% (8.3%) 

200 
Head 0.1% (2.0%) -0.1% (1.3%) -0.4% (1.3%) 

Body 1.5% (2.9%) 1.6% (3.1%) -0.4% (1.0%) 

PMMA 

28 
Head -1.4% (12.2%) -1.0% (7.5%) -0.9% (6.2%) 

Body -1.6% (19.8%) -0.9% (7.4%) 0.0% (5.2%) 

200 
Head 0.4% (1.2%) 0.5% (0.7%) 0.5% (0.8%) 

Body 0.4% (1.9%) 0.5% (0.8%) 0.3% (0.7%) 
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 The law of propagation of uncertainty was employed to further investigate the 

sensitivity of the estimated linear attenuation coefficient to errors in the reconstructed CT 

images.  Figure 6 plots the percent unexpanded uncertainty (coverage factor of k = 1) of 465 

the linear attenuation coefficient estimate of the test material as a function of energy. 

Note that the term ‘uncertainty’ refers to the total uncertainty arising from both 

systematic and random components.  For this propagated uncertainty analysis, we chose 

the total input image uncertainty for all eight test materials to have the same input image 

intensity uncertainty of 0.50% and 0.25% at 90 kVp and 140 kVp, respectively.  Basis 470 

material image uncertainty was chosen to be 0.07% (90 kVp) and 0.03% (140 kVp).  

These levels of input image-intensity uncertainty were chosen as they are similar to the 

image noises reconstructed using the standard scanning protocol.  It is seen that this level 

of reconstructed image uncertainty leads to pDECT attenuation coefficient uncertainty of 

around 1% for energies greater than 50 keV.  The uncertainty increases as energy 475 

decreases, ranging from 4% to 20% at 10 keV.  This is similar to the trend of the mean 

bias increasing for low energies as shown in figure 4 and table 2.  Figure 6 also illustrates 

that for the same input reconstructed image uncertainty, the pDECT attenuation 

coefficient estimate is more sensitive for some materials than others.  Broadly speaking, 

the test substances that use the (water, polystyrene) basis pair are more sensitive to input 480 

image error than the test substances that use the (water, 23% CaCl2) basis pair. 
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Figure 6.  Percent unexpanded (k=1) uncertainty of the DE estimated linear attenuation coefficient as a 
function of energy.  All eight test materials are shown here and were assumed to have the same input image 
uncertainty of 0.50%, 0.25% (90, 140 kVp) and basis uncertainty of 0.07%, 0.03%.  This level of input 
image uncertainty was chosen as it was similar to the reconstructed image noises using the standard 
scanning protocol employed here for 1x1x3 mm3 voxel dimensions. 
 

 Using the law of propagated uncertainty, we can also answer the question, “what 

reconstructed image uncertainty is required to achieve a target attenuation coefficient 485 

uncertainty at a given energy?”  Table 3 reports the image uncertainty needed to achieve 

DE estimated attenuation coefficient uncertainty of 3% at 20 keV.  It is seen that for the 

high-Z materials modeled by the (water, 23% CaCl2) basis pair, image uncertainty of less 

than [0.20% : 0.40%] and [0.10% : 0.20%], for 90 kVp and 140 kVp respectively, is 

required.  For the low-Z materials modeled by the (water, polystyrene) basis pair, image 490 

uncertainty of less than [0.06% : 0.12%] and [0.03% : 0.06%], for 90 kVp and 140 kVp 

respectively, is required. 

 Given a target reconstructed image uncertainty, we can further estimate the pixel 

size necessary to achieve the target uncertainty for the same scanning dose.  This analysis 

assumes that the image uncertainty (X) is dominated by random image noise which can 495 

be reduced by averaging pixels according to the familiar 1 N  relationship.  The AM 

and FBP noise values used here were measured within each test substance from images 

acquired with the standard scanning dose and reconstructed with 1x1x3 mm3 voxel 

dimensions.  Table 3 reports the estimated in-plane pixel size necessary to achieve the 
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target image uncertainty, for the same cross-plane pixel dimension of 3 mm.  It is seen 500 

that the AM algorithm has the potential to achieve the target image uncertainty with in-

plane pixel dimensions around 40% smaller than FBP.  It is also clear that the greater 

sensitivity of the low-Z cross sections to input image uncertainty requires in-plane pixel 

dimensions on the order of 10 mm in order to achieve 3% measurement uncertainty at 20 

keV at clinically-acceptable doses. 505 

 

Table 3.  Percent reconstructed image uncertainty required to achieve a target linear attenuation coefficient 
uncertainty of 3% at 20 keV.  Basis material intensities are assumed to have an uncertainty of 0.07% and 
0.03% for 90 kVp and 140 kVp, respectively.  From the image noise reconstructed using 1.0x1.0x3.0 mm3 
voxels, the in-plane pixel size (for the same slice thickness of 3.0 mm) necessary to achieve the target 
image uncertainty can be estimated for each algorithm.

Basis pair (,) 
Test 

Substance (X) 
X @ 90 kVp 

(%) 
X @ 140 kVp 

(%) 
AM pixel size 
(mm x mm) 

FBP pixel size 
(mm x mm) 

(Water, 23% 

CaCl2) 

18% CaCl2 0.40 0.20 1.2 x 1.2 2.1 x 2.1 
7% CaCl2 0.28 0.14 2.1 x 2.1 3.4 x 3.4 

29% NaClO3 0.30 0.15 1.6 x 1.6 3.0 x 3.0 
Teflon 0.20 0.10 1.9 x 1.9 3.5 x 3.5 

(Water, 

Polystyrene) 

ETOH 0.08 0.04 9.5 x 9.5 15.1 x 15.1 
50% ETOH 0.12 0.06 5.4 x 5.4 8.8 x 8.8 

MEK 0.06 0.03 14.7 x 14.7 22.4 x 22.4 
PMMA 0.09 0.05 6.0 x 6.0 9.6 x 9.6 

 

4. Discussion 

 The two-parameter models used to represent photon cross-sections often have 

model-fitting accuracy around the 1% level(Midgley 2004; Williamson and Li 2006).  510 

The mean accuracy of pDECT total linear attenuation coefficient estimation from real 

data demonstrated here, which includes both modeling and measurement error, is thus 

encouraging.  In the case where a large number of voxels can be averaged to reduce 

statistical uncertainty, mean linear attenuation coefficient errors are less than 1% for 

energies between 30 keV and 1 MeV with errors rising to between 3% and 6% at 10 keV.  515 

Both FBP and polyenergetic AM image reconstruction are shown to confer similar 

pDECT mean attenuation coefficient estimation accuracy, likely due to the idealized 

calibration procedure used here in which basis materials and test substances were scanned 

in identical phantom geometries. 

 Very few experiences of directly estimating attenuation coefficients from 520 

experimentally acquired dual-energy data are reported in the literature.  Goodsitt et al. 
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recently published on their experience using the GE dual-energy system to estimate the 

effective atomic number and synthesized monochromatic images for a range of phantom 

materials(Goodsitt and Christodoulou 2011).  The GE system utilizes fast-kVp switching 

for data acquisition and a proprietary pre-reconstruction method for decomposing the 525 

data into the basis components.  In the range of 40 keV to 120 keV, they observed 

synthesized monochromatic CT # errors on the order of 1% up to 20%.  It is difficult to 

compare Goodsitt et al.’s results to those reported here for a number of reasons.  The test 

materials used are different and both reports show a dependence on test material.  In 

addition, no information regarding GE’s proprietary basis materials or calibration 530 

procedure is available.   However, Goodsitt et al. provide a good discussion regarding the 

sensitivity of their results to phantom size and assumed test material density that are 

similar to the results of the work presented here and will help focus future research in the 

area. 

 In this work, the increased spectral separation of the 90+140 Tin scanning 535 

energies is found to have similar mean attenuation coefficient estimation accuracy as the 

90+140 Std scanning energies, despite delivering 25% of the patient dose. The data 

acquisition protocols used in this work utilized the maximum tube current available.  

Work is ongoing to quantify the scanning dose of the tin filtered 140 kVp beam and to 

explore other data acquisition protocols with which we can increase the mAs per rotation.  540 

Future studies are intended to compare pDECT performance between the Std and Tin x-

ray spectrum with matched scanning dose. 

 The statistically motivated AM algorithm does show the ability to reconstruct 

cross-section estimates with less pixel-to-pixel variation around the mean value, as shown 

in figure 5 and table 2.  The noise advantage of the AM algorithm implies that to achieve 545 

a target level of cross-section uncertainty either fewer pixels will need to be averaged, 

less smoothing applied to the images, or DECT data can be acquired at lower imaging 

dose than for conventional FBP reconstruction.  From the uncertainty analysis, the pixel 

size required to meet a target pDECT uncertainty was estimated.  The noise advantage of 

the AM algorithm shows the potential to achieve a target level of pDECT uncertainty for 550 

reconstructed pixels with in-plane dimensions approximately 40% smaller than FBP. 
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 The analysis of propagated attenuation coefficient uncertainty also highlights the 

exquisite sensitivity of the post-processing DECT method to errors, both random and 

systematic, in the reconstructed images.  Low atomic-number materials are shown to be 

particularly sensitive to image-intensity errors.  For DECT cross-section estimation and 555 

quantitative CT applications at large, the reconstructed image intensities for a given 

material need to be consistent. i.e., independent of location within the scan subject, 

overall size of the scan subject, and location of the subject within the FOV (Evans and 

Whiting 2011).  SIR algorithms have been shown to reconstruct images that better satisfy 

these criteria of image consistency than FBP (De Man and Nuyts 2001; Elbakri and 560 

Fessler 2003; Evans and Whiting 2011; O'Sullivan and Benac 2007) and thus may 

provide an advantage over FBP in more complex geometries.  Future work is planned to 

assess the effect of multiple test substances within the phantom and varying locations 

within the phantom on pDECT cross-section estimation accuracy. 

 The results from the experimentally acquired data in this work support the 565 

pDECT sensitivity shown in the propagated uncertainty analysis.  Systematic streaking 

artifacts known to arise from excessively noisy data(Hsieh 1998) were found to 

compromise mean pDECT accuracy in the larger body phantom.  Averaging repeat data 

acquisitions to increase the effective scanning dose was needed to achieve acceptable 

accuracy in the body phantom geometry for the basis materials and the MEK test 570 

substance.  For calibration of the basis substances there is no need to limit scanning dose.  

However, the sensitivity of the low-Z materials, such as MEK, raises concern about the 

accuracy achievable in patients for which limiting the scanning dose is important.  Target 

reconstructed image uncertainty on the order of a fraction of a percent as shown in table 3 

is unlikely to be practically achievable on existing CT hardware.  Further investigation is 575 

warranted to assess the level of cross-section uncertainty required to achieve acceptable 

levels of dose calculation uncertainty.  The sensitivity of the post-processing DECT 

method to image-intensity uncertainties motivates interest in more sophisticated 

reconstruction approaches.  For example, using the AM algorithm to simultaneously 

operate on the DE sinograms to estimate the basis component fractions (O'Sullivan and 580 

Benac 2004) may be a promising approach. 
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 A practical limitation of the simple pDECT cross-section estimation method 

presented here is the selection of the optimal basis pair.  Basis pair selection by equation 

(3) can lead to the assignment of non-ideal basis pairs since image noise can often exceed 

the difference between average high and low energy image intensities.  As noted in the 585 

methods, potential bias from varying amounts of basis pair misclassification in AM and 

FBP images was avoided by assigning pixels known to be within each test substance to 

the ideal basis pair.  Utilizing a highly smoothed pair of DECT images for basis pair 

selection could be employed to reduce the fraction of misclassified pixels, however the 

effect of increased edge blurring from the aggressive image smoothing would need to be 590 

assessed for this method. 
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5. Conclusions 

 In this work we have experimentally assessed the accuracy of post-processing 595 

DECT imaging for estimating the total attenuation coefficients in the 10 keV to 1 MeV 

energy range.  Phantom materials with composition and density spanning the range of 

biological tissues were investigated in idealized geometries from datasets acquired on a 

commercially available CT scanner.  Estimated photon attenuation coefficients were 

found to have clinically acceptable mean bias on the order of 1%-3%, for both small 600 

head-like phantoms and larger body-like phantoms for energies greater than 30 keV.  For 

lower energies down to 10 keV, mean bias was found to increase to around 5%-6%.  The 

larger body phantom necessitated scanning the basis materials and one test substance at a 

higher dose to achieve adequate signal-to-noise ratio.  Additional tin filtering of the high 

kVp beam to increase the spectral separation of the DE scans was found to confer similar 605 

accuracy to the standard x-ray spectra even though the effective scanning dose of the tin 

filtered beam was less than 25% of the standard beam. 

 For the post-processing DECT method with matched basis material calibration 

and test substance geometries, the main advantage of polyenergetic statistical 

reconstruction is the improved noise performance with a corresponding decrease in cross-610 

section measurement uncertainty for a given patient dose.  Directly incorporating the 

statistical nature of the CT data is seen to reduce the pixel-to-pixel variability of the 

estimated cross-section, implying SIR can support pDECT cross-section estimation to a 

specified uncertainty with less pixel averaging, less smoothing or less imaging dose than 

conventional FBP reconstruction.  Incorporating a more accurate forward model in SIR 615 

reconstruction is expected to demonstrate an advantage for future work which plans to 

utilize more complex phantom geometries.  That a simple post-processing DECT method 

can estimate photon cross-sections from experimental data acquired on a commercially 

available scanner on the order of 1% accuracy is encouraging for kV dose calculation 

applications, which are sensitive to material composition.  However, the highly sensitive 620 

nature of the post-processing DECT method may limit the clinical utility in more 

complex patient geometries where image uncertainty can easily exceed 0.5%. 
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